
An Introduction To Data Stream Query Processing

Neil Conway
<nconway@aminsight.com>

Amalgamated Insight, Inc.

May 24, 2007

Neil Conway (AmInsight) Data Stream Query Processing May 24, 2007 1 / 45



Outline

1 The Need For Data Stream Processing

2 Stream Query Languages

3 Query Processing Techniques For Streams
System Architecture
Shared Evaluation
Adaptive Tuple Routing
Overload Handling

4 Current Choices For A DSMS
Open Source
Proprietary

5 Demo

6 Q & A

Neil Conway (AmInsight) Data Stream Query Processing May 24, 2007 2 / 45



Outline

1 The Need For Data Stream Processing

2 Stream Query Languages

3 Query Processing Techniques For Streams
System Architecture
Shared Evaluation
Adaptive Tuple Routing
Overload Handling

4 Current Choices For A DSMS
Open Source
Proprietary

5 Demo

6 Q & A

Neil Conway (AmInsight) Data Stream Query Processing May 24, 2007 3 / 45



The Need For Data Stream Processing

What’s wrong with database systems?

Nothing, but they aren’t the right solution
to every problem

What are some problems for which
a traditional DBMS is an awkward fit?

Neil Conway (AmInsight) Data Stream Query Processing May 24, 2007 4 / 45



The Need For Data Stream Processing

What’s wrong with database systems?

Nothing, but they aren’t the right solution
to every problem

What are some problems for which
a traditional DBMS is an awkward fit?

Neil Conway (AmInsight) Data Stream Query Processing May 24, 2007 4 / 45



The Need For Data Stream Processing

What’s wrong with database systems?

Nothing, but they aren’t the right solution
to every problem

What are some problems for which
a traditional DBMS is an awkward fit?

Neil Conway (AmInsight) Data Stream Query Processing May 24, 2007 4 / 45



Financial Analysis

Electronic trading is now commonplace

Trading volume continues to increase rapidly

Algorithmic trading: detect advantageous market conditions,
automatically execute trades

Latency is key

Visualization

A hard problem in itself

Typical Queries

5-minute rolling average, volume-waited average price (VWAP)

Comparison between sector averages and portfolio averages over time

Implement models provided by quantitive analysis

Neil Conway (AmInsight) Data Stream Query Processing May 24, 2007 5 / 45



Financial Analysis

Electronic trading is now commonplace

Trading volume continues to increase rapidly

Algorithmic trading: detect advantageous market conditions,
automatically execute trades

Latency is key

Visualization

A hard problem in itself

Typical Queries

5-minute rolling average, volume-waited average price (VWAP)

Comparison between sector averages and portfolio averages over time

Implement models provided by quantitive analysis

Neil Conway (AmInsight) Data Stream Query Processing May 24, 2007 5 / 45



Network Monitoring

Network volume continues to increase rapidly

Custom solutions are possible, but roll-your-own is expensive

Ad-hoc queries would be nice

Can we build generic infrastructure for these kinds of monitoring
applications?

Neil Conway (AmInsight) Data Stream Query Processing May 24, 2007 6 / 45



Sensor Networks

Pervasive Sensors

“As the cost of micro sensors continues to decline over the next decade,
we could see a world in which everything of material significance gets
sensor-tagged.” – Mike Stonebraker

Military applications: real-time command and control

Healthcare

Habitat monitoring

Manufacturing

Neil Conway (AmInsight) Data Stream Query Processing May 24, 2007 7 / 45



Other Examples

Real-Time Decision Support

Turnaround-time for traditional data warehouses is often too slow

“Business Activity Monitoring” (BAM)

Fraud Detection

Sophisticated, cross-channel fraud

Real-time

Online Gaming

Detect malicious behavior

Monitor quality of service

Neil Conway (AmInsight) Data Stream Query Processing May 24, 2007 8 / 45



Other Examples

Real-Time Decision Support

Turnaround-time for traditional data warehouses is often too slow

“Business Activity Monitoring” (BAM)

Fraud Detection

Sophisticated, cross-channel fraud

Real-time

Online Gaming

Detect malicious behavior

Monitor quality of service

Neil Conway (AmInsight) Data Stream Query Processing May 24, 2007 8 / 45



Other Examples

Real-Time Decision Support

Turnaround-time for traditional data warehouses is often too slow

“Business Activity Monitoring” (BAM)

Fraud Detection

Sophisticated, cross-channel fraud

Real-time

Online Gaming

Detect malicious behavior

Monitor quality of service

Neil Conway (AmInsight) Data Stream Query Processing May 24, 2007 8 / 45



Data Stream Management Systems

Database Systems

Mostly static data, ad-hoc one-time queries

Fire the queries at the data, return result sets

“Store and query”

Focus: concurrent reads & writes, efficient use of I/O, maximize
transaction throughput, transactional consistency, historical analysis

Data Stream Systems

Mostly transient data, continuous queries

Fire the data at the queries, incrementally update result streams

Data rates often exceed disk throughput

Neil Conway (AmInsight) Data Stream Query Processing May 24, 2007 9 / 45



Data Stream Management Systems

Database Systems

Mostly static data, ad-hoc one-time queries

Fire the queries at the data, return result sets

“Store and query”

Focus: concurrent reads & writes, efficient use of I/O, maximize
transaction throughput, transactional consistency, historical analysis

Data Stream Systems

Mostly transient data, continuous queries

Fire the data at the queries, incrementally update result streams

Data rates often exceed disk throughput

Neil Conway (AmInsight) Data Stream Query Processing May 24, 2007 9 / 45



Complex Event Processing (CEP)

Data stream processing emerged from the database community

Early 90’s: “active databases” with triggers

Complex Event Processing is another approach to the same problems

Different nomenclature and background
Often similar in practice

Neil Conway (AmInsight) Data Stream Query Processing May 24, 2007 10 / 45



Outline

1 The Need For Data Stream Processing

2 Stream Query Languages

3 Query Processing Techniques For Streams
System Architecture
Shared Evaluation
Adaptive Tuple Routing
Overload Handling

4 Current Choices For A DSMS
Open Source
Proprietary

5 Demo

6 Q & A

Neil Conway (AmInsight) Data Stream Query Processing May 24, 2007 11 / 45



Data Streams

A stream is an infinite sequence of 〈tuple, timestamp〉 pairs

Append-only
New type of database object

The timestamp defines a total order over the tuples in a stream

In practice: require that stream tuples have a special CQTIME column

Different approaches to building stream processing systems

This talk: relation-oriented DSMS. Specifically, TelegraphCQ,
AmInsight, StreamBase, . . .

Neil Conway (AmInsight) Data Stream Query Processing May 24, 2007 12 / 45



CREATE STREAM

Exactly 1 column must have a CQTIME constraint

CQTIME can be system-generated or user-provided

With user-provided timestamps, system must cope with out-of-order
tuples

“Slack” specifies maximum out-of-orderness

Example Query

CREATE STREAM trades (
symbol varchar(5),
price real,
volume integer,
tstamp timestamp CQTIME USER GENERATED SLACK ‘1 minute’

) TYPE UNARCHIVED;

Neil Conway (AmInsight) Data Stream Query Processing May 24, 2007 13 / 45



Types of Streams

Raw Streams

Stream tuples are injected into the system by an external data source

E.g. stock tickers, sensor data, network interface, . . .

Both push and pull models have been explored

Derived Streams

Defined by a query expression that yields a stream

Archived Streams

Allows historical and real-time stream content to be combined
in a single database object

Neil Conway (AmInsight) Data Stream Query Processing May 24, 2007 14 / 45



Types of Streams

Raw Streams

Stream tuples are injected into the system by an external data source

E.g. stock tickers, sensor data, network interface, . . .

Both push and pull models have been explored

Derived Streams

Defined by a query expression that yields a stream

Archived Streams

Allows historical and real-time stream content to be combined
in a single database object

Neil Conway (AmInsight) Data Stream Query Processing May 24, 2007 14 / 45



Language Design Philosophy

Pragmatism: relational query languages are well-established

Relational query evaluation techniques are well-understood
Everyone knows SQL

Therefore, add stream-oriented extensions to SQL

Pioneering work: CQL from Stanford STREAM project

Kinds Of Operators

Relation → Relation: Plain Old SQL

Stream → Relation: Periodically produce a relation from a stream

Relation → Stream: Produce stream from changes to a relation

Note that S → S operators are not provided.

Neil Conway (AmInsight) Data Stream Query Processing May 24, 2007 15 / 45



Language Design Philosophy

Pragmatism: relational query languages are well-established

Relational query evaluation techniques are well-understood
Everyone knows SQL

Therefore, add stream-oriented extensions to SQL

Pioneering work: CQL from Stanford STREAM project

Kinds Of Operators

Relation → Relation: Plain Old SQL

Stream → Relation: Periodically produce a relation from a stream

Relation → Stream: Produce stream from changes to a relation

Note that S → S operators are not provided.

Neil Conway (AmInsight) Data Stream Query Processing May 24, 2007 15 / 45



Continuous Queries

Fundamental Difference

The result of a continuous query is an unbounded stream, not a finite
relation

Typical Query

1 Split infinite stream into pieces via windows

S → R

2 Compute analysis for the current window, comparison with prior
windows or historical data

R → R

3 Convert result of analysis into result stream

R → S
Often implicit (use defaults)

Neil Conway (AmInsight) Data Stream Query Processing May 24, 2007 16 / 45



Continuous Queries

Fundamental Difference

The result of a continuous query is an unbounded stream, not a finite
relation

Typical Query

1 Split infinite stream into pieces via windows

S → R

2 Compute analysis for the current window, comparison with prior
windows or historical data

R → R

3 Convert result of analysis into result stream

R → S
Often implicit (use defaults)

Neil Conway (AmInsight) Data Stream Query Processing May 24, 2007 16 / 45



Stream → Relation Operators: Windows

Streams are infinite: at any given time, examine a finite sub-set
Apply window operator to stream to periodically produce
visible sets of tuples

Properties of Sliding Windows

Range: “Width” of the window. Units: rows or time.

Slide: How often to emit new visible sets. Units: rows or time.

Start: When to start emitting results.

Neil Conway (AmInsight) Data Stream Query Processing May 24, 2007 17 / 45



Stream → Relation Operators: Windows

Streams are infinite: at any given time, examine a finite sub-set
Apply window operator to stream to periodically produce
visible sets of tuples

Properties of Sliding Windows

Range: “Width” of the window. Units: rows or time.

Slide: How often to emit new visible sets. Units: rows or time.

Start: When to start emitting results.

Neil Conway (AmInsight) Data Stream Query Processing May 24, 2007 17 / 45



Example Query

Description

Every second, return the total volume of trades in the previous second.

Query

SELECT sum(volume) AS volume,
advance_agg(qtime) AS windowtime

FROM trades < VISIBLE ‘1 second’ ADVANCE ‘1 second’ >

Neil Conway (AmInsight) Data Stream Query Processing May 24, 2007 18 / 45



Another Example

Description

Every 5 seconds, return the volume-adjusted price of MSFT for the last 1
minute of trades.

Query

SELECT sum(price * volume) / sum(volume) AS vwap,
sum(volume) AS volume,
advance_agg(qtime) AS windowtime

FROM trades < VISIBLE ‘1 minute’ ADVANCE ‘5 seconds’ >
WHERE symbol = ’MSFT’

Neil Conway (AmInsight) Data Stream Query Processing May 24, 2007 19 / 45



More About Windows

Aggregation

Useful aggregate: advance agg(CQTIME )

Timestamp that marks the end of the current window

Similar aggregates for “beginning of window”, “middle of window”
might also be useful

Other Window Types

Landmark: Fixed left edge, “elastic” right edge. Periodically reset.
(“All stock trades after 9AM today.”)

Partitioned: Divide stream into sub-streams based on partitioning key(s),
then apply another S → R operator to the sub-streams.

Neil Conway (AmInsight) Data Stream Query Processing May 24, 2007 20 / 45



More About Windows

Aggregation

Useful aggregate: advance agg(CQTIME )

Timestamp that marks the end of the current window

Similar aggregates for “beginning of window”, “middle of window”
might also be useful

Other Window Types

Landmark: Fixed left edge, “elastic” right edge. Periodically reset.
(“All stock trades after 9AM today.”)

Partitioned: Divide stream into sub-streams based on partitioning key(s),
then apply another S → R operator to the sub-streams.

Neil Conway (AmInsight) Data Stream Query Processing May 24, 2007 20 / 45



Relation → Stream Operators

Types of Operators

ISTREAM: the tuples added to a relation

RSTREAM: all the tuples in a relation

DSTREAM: the tuples removed from relation

Defaults

ISTREAM for queries without aggregation/grouping

RSTREAM for queries with aggregation/grouping

DSTREAM is rarely useful

Neil Conway (AmInsight) Data Stream Query Processing May 24, 2007 21 / 45



Relation → Stream Operators

Types of Operators

ISTREAM: the tuples added to a relation

RSTREAM: all the tuples in a relation

DSTREAM: the tuples removed from relation

Defaults

ISTREAM for queries without aggregation/grouping

RSTREAM for queries with aggregation/grouping

DSTREAM is rarely useful

Neil Conway (AmInsight) Data Stream Query Processing May 24, 2007 21 / 45



Mixed Joins

Common Requirement

Compare stream tuples with historical data

System must provide both tables and streams!

Elegantly modeled as a join between a table and a stream

Implementation

Stream is the right (outer) join operand; left (inner) operand is
arbitrary Postgres subplan

For each stream tuple, join against non-continuous subplan

Neil Conway (AmInsight) Data Stream Query Processing May 24, 2007 22 / 45



Mixed Joins

Common Requirement

Compare stream tuples with historical data

System must provide both tables and streams!

Elegantly modeled as a join between a table and a stream

Implementation

Stream is the right (outer) join operand; left (inner) operand is
arbitrary Postgres subplan

For each stream tuple, join against non-continuous subplan

Neil Conway (AmInsight) Data Stream Query Processing May 24, 2007 22 / 45



Mixed Join Example

Description

Every 3 seconds, compute the total value of high-volume trades made on
stocks in the S & P 500 in the past 5 seconds.

Example Query

SELECT T.symbol, sum(T.price * T.volume)
FROM s_and_p_500 S,

trades T < VISIBLE ‘5 sec’ ADVANCE ‘3 sec’ >
WHERE T.symbol = S.symbol

AND T.volume > 5000
GROUP BY T.symbol

Neil Conway (AmInsight) Data Stream Query Processing May 24, 2007 23 / 45



Composing Streams

The tuples in a stream can be viewed as a series of events

E.g. “The temperature in the room is 20◦”, 25◦, 30◦, . . .

The output of a continuous query is another series of events, typically
higher-level or more complex

E.g. “The room is on fire.”

Therefore, streams can be composed in various ways:
Stream views

Macro semantics

Derived streams
Subqueries
Active tables

Neil Conway (AmInsight) Data Stream Query Processing May 24, 2007 24 / 45



Composing Streams

The tuples in a stream can be viewed as a series of events

E.g. “The temperature in the room is 20◦”, 25◦, 30◦, . . .

The output of a continuous query is another series of events, typically
higher-level or more complex

E.g. “The room is on fire.”

Therefore, streams can be composed in various ways:
Stream views

Macro semantics

Derived streams
Subqueries
Active tables

Neil Conway (AmInsight) Data Stream Query Processing May 24, 2007 24 / 45



Derived Streams

A derived stream is a database object defined
by a persistent continuous query

Unlike a stream view, always active

Similar to a materialized view

Neil Conway (AmInsight) Data Stream Query Processing May 24, 2007 25 / 45



Example Query

Description

Every 3 seconds, compute the “volume-weighted average price” (VWAP)
for all stocks traded in the past 5 seconds.

Query

CREATE STREAM vwap (symbol varchar(5),
vwap float,
vtime timestamp cqtime) AS

(SELECT symbol,
sum(price * volume) / sum(volume),
advance_agg(qtime)

FROM trades < VISIBLE ‘5 seconds’ ADVANCE ‘3 seconds’ >
GROUP BY symbol);

Neil Conway (AmInsight) Data Stream Query Processing May 24, 2007 26 / 45



Subqueries

One-time subqueries can be used in continuous queries, of course

Continuous subqueries are planned and executed as
independent queries

Essentially inline derived streams

Require that subqueries yielding streams specify CQTIME

Planned: WITH-clause subqueries

Neil Conway (AmInsight) Data Stream Query Processing May 24, 2007 27 / 45



Active Tables

An active table is a table with an associated continuous query

Two modes of operation:

Append: New stream tuples appended to table at each window
Replace: At each new window, truncate previous table contents

Neil Conway (AmInsight) Data Stream Query Processing May 24, 2007 28 / 45



Event Language

Example Query

SELECT ‘Shoplifting!’, D.loc, D.id
FROM Store S C D PARTITION BY id
WHERE S.loc = ‘shelf’ and C.loc = ‘checkout’

AND D.loc = ‘door’
EVENT AND (FOLLOWS(S, D, ‘1 hour’),

NOT PRECEDES(C, D, ‘1 hour’));

Neil Conway (AmInsight) Data Stream Query Processing May 24, 2007 29 / 45



Outline

1 The Need For Data Stream Processing

2 Stream Query Languages

3 Query Processing Techniques For Streams
System Architecture
Shared Evaluation
Adaptive Tuple Routing
Overload Handling

4 Current Choices For A DSMS
Open Source
Proprietary

5 Demo

6 Q & A

Neil Conway (AmInsight) Data Stream Query Processing May 24, 2007 30 / 45



Basic Requirements

Adaptivity

Static query planning is undesirable for long-running queries

Either replan or use adaptive planning

Shared Processing

Essential for good performance: 100s of queries not uncommon

Long-lived queries make this more feasible

Graceful Overload Handling

Stream data rates are often highly variable

Often too expensive to provision for maximal data rate

Therefore, must handle overload gracefully

Neil Conway (AmInsight) Data Stream Query Processing May 24, 2007 31 / 45



Basic Requirements

Adaptivity

Static query planning is undesirable for long-running queries

Either replan or use adaptive planning

Shared Processing

Essential for good performance: 100s of queries not uncommon

Long-lived queries make this more feasible

Graceful Overload Handling

Stream data rates are often highly variable

Often too expensive to provision for maximal data rate

Therefore, must handle overload gracefully

Neil Conway (AmInsight) Data Stream Query Processing May 24, 2007 31 / 45



Basic Requirements

Adaptivity

Static query planning is undesirable for long-running queries

Either replan or use adaptive planning

Shared Processing

Essential for good performance: 100s of queries not uncommon

Long-lived queries make this more feasible

Graceful Overload Handling

Stream data rates are often highly variable

Often too expensive to provision for maximal data rate

Therefore, must handle overload gracefully

Neil Conway (AmInsight) Data Stream Query Processing May 24, 2007 31 / 45



System Architecture

Modified version of PostgreSQL

One-time queries executed normally

Continuous queries planned and executed by the CqRuntime process

Stream input: COPY, or submitted via TCP to CqIngress process

libevent-based, simple COPY-like protocol

Stream output: cursors, active tables, CqEgress process

Communication between processes done via shared memory queue
infrastructure

Message passing done via SysV shmem and locks

Neil Conway (AmInsight) Data Stream Query Processing May 24, 2007 32 / 45



System Architecture

Modified version of PostgreSQL

One-time queries executed normally

Continuous queries planned and executed by the CqRuntime process

Stream input: COPY, or submitted via TCP to CqIngress process

libevent-based, simple COPY-like protocol

Stream output: cursors, active tables, CqEgress process

Communication between processes done via shared memory queue
infrastructure

Message passing done via SysV shmem and locks

Neil Conway (AmInsight) Data Stream Query Processing May 24, 2007 32 / 45



Shared Runtime

New continuous query is defined → shared runtime via shared memory

Runtime plans the query, folds query into single shared query plan

Not a traditional tree; graph of operators

Shared Runtime Main Loop

1 Check for control messages: add new CQ, remove CQ, . . .
2 Check for new stream tuples

Route each stream tuple through the operator graph (CPS)
Push output tuples to result consumers

Neil Conway (AmInsight) Data Stream Query Processing May 24, 2007 33 / 45



Shared Evaluation

Continuous query evaluation done by a network of operators in the
shared runtime

If multiple queries reference the same operator, we can evaluate it
only once

Better than linear scalability!

Each operator keeps track of the queries it helps to implement

Neil Conway (AmInsight) Data Stream Query Processing May 24, 2007 34 / 45



Implementing Shared Evaluation

Sharing Predicates

Simple cases: <, ≤, =, >, ≥, 6=
Construct a tree that divides domain of type into disjoint regions
For each tuple: walk the tree to find the region the tuple belongs in

Region implies which queries the tuple is still visible to

Immutable functions can also be shared relatively easily

Sharing Joins, Aggregates

Can also be done

Even between queries with varying windows and predicates

Requires some thought (say, a PhD thesis or two)

Neil Conway (AmInsight) Data Stream Query Processing May 24, 2007 35 / 45



Implementing Shared Evaluation

Sharing Predicates

Simple cases: <, ≤, =, >, ≥, 6=
Construct a tree that divides domain of type into disjoint regions
For each tuple: walk the tree to find the region the tuple belongs in

Region implies which queries the tuple is still visible to

Immutable functions can also be shared relatively easily

Sharing Joins, Aggregates

Can also be done

Even between queries with varying windows and predicates

Requires some thought (say, a PhD thesis or two)

Neil Conway (AmInsight) Data Stream Query Processing May 24, 2007 35 / 45



Adaptive Tuple Routing

Given a new tuple, how do we route it through the graph of
operators?

Traditional approach: statically choose an “optimal” route for each
stream

Hard optimization problem
Need to re-optimize when new queries defined or system conditions
change (e.g. operator selectivity)

TelegraphCQ approach: adaptive per-tuple routing

Push tuples one at a time through the operator graph; choose order of
operators at runtime

Neil Conway (AmInsight) Data Stream Query Processing May 24, 2007 36 / 45



Adaptive Tuple Routing

Given a new tuple, how do we route it through the graph of
operators?

Traditional approach: statically choose an “optimal” route for each
stream

Hard optimization problem
Need to re-optimize when new queries defined or system conditions
change (e.g. operator selectivity)

TelegraphCQ approach: adaptive per-tuple routing

Push tuples one at a time through the operator graph; choose order of
operators at runtime

Neil Conway (AmInsight) Data Stream Query Processing May 24, 2007 36 / 45



Adaptive Tuple Routing

Given a new tuple, how do we route it through the graph of
operators?

Traditional approach: statically choose an “optimal” route for each
stream

Hard optimization problem
Need to re-optimize when new queries defined or system conditions
change (e.g. operator selectivity)

TelegraphCQ approach: adaptive per-tuple routing

Push tuples one at a time through the operator graph; choose order of
operators at runtime

Neil Conway (AmInsight) Data Stream Query Processing May 24, 2007 36 / 45



Implementing Adaptive Routing

For each tuple, maintain lineage

“What operators has this tuple visited?”
“Which queries can still see this tuple?”

Implication: can’t push down projections

Make routing decisions on the basis of simple run-time statistics

Neil Conway (AmInsight) Data Stream Query Processing May 24, 2007 37 / 45



Handling Overload

Common scenario: peak stream rate >> average stream rate
(“bursty”)

The system should cope gracefully

Three alternatives:

1 Spool tuples to disk, process later

But stream rates often exceed disk throughput

2 Drop excess tuples
3 Substitute statistical summaries for dropped stream tuples

Quality of Service (QoS)

Neil Conway (AmInsight) Data Stream Query Processing May 24, 2007 38 / 45



Handling Overload

Common scenario: peak stream rate >> average stream rate
(“bursty”)

The system should cope gracefully

Three alternatives:
1 Spool tuples to disk, process later

But stream rates often exceed disk throughput

2 Drop excess tuples
3 Substitute statistical summaries for dropped stream tuples

Quality of Service (QoS)

Neil Conway (AmInsight) Data Stream Query Processing May 24, 2007 38 / 45



Handling Overload

Common scenario: peak stream rate >> average stream rate
(“bursty”)

The system should cope gracefully

Three alternatives:
1 Spool tuples to disk, process later

But stream rates often exceed disk throughput

2 Drop excess tuples

3 Substitute statistical summaries for dropped stream tuples

Quality of Service (QoS)

Neil Conway (AmInsight) Data Stream Query Processing May 24, 2007 38 / 45



Handling Overload

Common scenario: peak stream rate >> average stream rate
(“bursty”)

The system should cope gracefully

Three alternatives:
1 Spool tuples to disk, process later

But stream rates often exceed disk throughput

2 Drop excess tuples
3 Substitute statistical summaries for dropped stream tuples

Quality of Service (QoS)

Neil Conway (AmInsight) Data Stream Query Processing May 24, 2007 38 / 45



Handling Overload

Common scenario: peak stream rate >> average stream rate
(“bursty”)

The system should cope gracefully

Three alternatives:
1 Spool tuples to disk, process later

But stream rates often exceed disk throughput

2 Drop excess tuples
3 Substitute statistical summaries for dropped stream tuples

Quality of Service (QoS)

Neil Conway (AmInsight) Data Stream Query Processing May 24, 2007 38 / 45



Outline

1 The Need For Data Stream Processing

2 Stream Query Languages

3 Query Processing Techniques For Streams
System Architecture
Shared Evaluation
Adaptive Tuple Routing
Overload Handling

4 Current Choices For A DSMS
Open Source
Proprietary

5 Demo

6 Q & A

Neil Conway (AmInsight) Data Stream Query Processing May 24, 2007 39 / 45



Open Source DSMS

Esper

DSMS engine written in Java (GPL). SQL-like stream query language.

http://esper.codehaus.org

TelegraphCQ

Academic prototype from UC Berkeley, based on PostgreSQL 7.3

PostgreSQL’s SQL dialect, plus stream-oriented extensions

BSD licensed; http://telegraph.cs.berkeley.edu

StreamCruncher

DSMS engine written in Java. Free for commercial use (not open source).

http://www.streamcruncher.com

Neil Conway (AmInsight) Data Stream Query Processing May 24, 2007 40 / 45

http://esper.codehaus.org
http://telegraph.cs.berkeley.edu
http://www.streamcruncher.com


Proprietary DSMS

StreamBase

A Stonebraker company. Founded in 2003.

Other Startups

Coral8

Apama (purchased by Progress Software in 2005)

and more . . .

Established Companies

TIBCO BusinessEvents, Oracle BAM

Neil Conway (AmInsight) Data Stream Query Processing May 24, 2007 41 / 45



Proprietary DSMS

StreamBase

A Stonebraker company. Founded in 2003.

Other Startups

Coral8

Apama (purchased by Progress Software in 2005)

and more . . .

Established Companies

TIBCO BusinessEvents, Oracle BAM

Neil Conway (AmInsight) Data Stream Query Processing May 24, 2007 41 / 45



Proprietary DSMS

StreamBase

A Stonebraker company. Founded in 2003.

Other Startups

Coral8

Apama (purchased by Progress Software in 2005)

and more . . .

Established Companies

TIBCO BusinessEvents, Oracle BAM

Neil Conway (AmInsight) Data Stream Query Processing May 24, 2007 41 / 45



Amalgamated Insight

Based on the experience gained from TelegraphCQ

New codebase

Application components:
1 Continuous Query Engine

Modified version of PostgreSQL (currently 8.1.9+)

2 Integration Framework

Connectors, input/output converters, query management

3 Visualization

Closed Series A funding in June 2006

1.0 release will be available Real Soon Now (currently RC3)

Lesson: PostgreSQL is a huge competitive advantage

We’re hiring :-)

Neil Conway (AmInsight) Data Stream Query Processing May 24, 2007 42 / 45



Outline

1 The Need For Data Stream Processing

2 Stream Query Languages

3 Query Processing Techniques For Streams
System Architecture
Shared Evaluation
Adaptive Tuple Routing
Overload Handling

4 Current Choices For A DSMS
Open Source
Proprietary

5 Demo

6 Q & A

Neil Conway (AmInsight) Data Stream Query Processing May 24, 2007 43 / 45



Outline

1 The Need For Data Stream Processing

2 Stream Query Languages

3 Query Processing Techniques For Streams
System Architecture
Shared Evaluation
Adaptive Tuple Routing
Overload Handling

4 Current Choices For A DSMS
Open Source
Proprietary

5 Demo

6 Q & A

Neil Conway (AmInsight) Data Stream Query Processing May 24, 2007 44 / 45



Q & A

Thank You.

Any Questions?

Neil Conway (AmInsight) Data Stream Query Processing May 24, 2007 45 / 45


	The Need For Data Stream Processing
	Stream Query Languages
	Query Processing Techniques For Streams
	System Architecture
	Shared Evaluation
	Adaptive Tuple Routing
	Overload Handling

	Current Choices For A DSMS
	Open Source
	Proprietary

	Demo
	Q & A

