Approximate Searches

Similarity searches in Postgresql using metric spaces

Enrico Pirozzi
www.psql.it
scotty@psql.it
info@enricopirozzi.info

PGCON 2008 - OTTAWA

We are going to talk about

- Searches with exact match
- Metric Spaces
- Approximate Searches
- Edit Distance
- Example
- Pivoting - Indexing
- Future issues

Requirements to Approx searches

- Postgresql
- C language
- SQL language
- PI-pgsql language

Exact Match

Select * from customers where name $=$ 'Enrico'

Result :

Enrico
| address
2, red street

Ottawa
There is match!!

Exact Search : when can I use it?

It make sense to use an exact search when we presume that our result is inside our database ->where name='Enrico'

EXACT SEARCH

Other kind of search ?

Images Search

Economic Search

PGCON 2008 - OTTAWA

Sounds Search

DNA Search

Other kind of search ?

Similarity Searches

Similarity Searches

Some Examples:

- Text retrievial
- Image searches
- Sound searches
- Other

Similarity Searches

In the exact searches we think our dataset as a set of rows and we make searches inside it

When we make a similatity search we have to think our dataset as a set of objects. The query is an object too that can belong or not belog to the dataset

Similarity Searches

The "similiarity search" is the search of objects that belong to the dataset and that are closer to the query object

Edit distance

Edit distance or Levenshtein distance:

The Edit distance between two strings is given by the minimum number of operations needed to transform one string into the other, where an operation is an insertion, deletion, or substitution of a single character.

Edit distance

For example the distance between "kitten" and "sitting" is 3

- kitten \rightarrow sitten (substitution of 's' for ' k ')
- sitten \rightarrow sittin (substitution of 'i' for 'e')
- sittin \rightarrow sitting (insert 'g' at the end)

Edit distance

Now we can compare:

- Strings

Every kind of object starting from its features -> Every object has features

- We find an object that has the smallest distance from our query.

Edit distance

Some Problems

Objects can have many dimensions : tipical 50-60 dimensions 1 dimension for each feature (for example 3 for RGB images, and so on...)

We can spend much time to calculate the edit distance.

Metric Spaces

A metric space is a set S with a global distance function (the metric d) so that for every two points x, y in S, returns the distance between them as a nonnegative real number $d(x, y)$.

Metric Spaces

The distance function $d(x, y)$ must be :

- non-negative: $d(x, y)>=0$
- Strictly Positive : $d(x, y)=0$ iff $x=y$
- Symmetric: $d(x, y)=d(y, x)$
- Have to satisfy the triangle inequality : $d(x, z)<=d(x, y)+d(y, z)$

Metric Spaces

Database objects are seen as points in a metric space

Query point can belong to the dataset

Multimedia Dataset

Query point can not belong to the dataset

Multimedia Dactaset

PGCON 2008 - OTTAWA
Query

Dataset vs points

Objects and queries are seen as points in a multidimensional metric space

Metric Spaces: Searches

- Nearest neighbor : search of the object more close to the query point
- K - Nearest neighbor : search of the K objects more close to the query point
- Range query : search of objects that are inside the circle with a given radius r and center in query point q

Nearest Neighbor

(D9) (Db) (DC) (DC)

The point p1 is the nearest neighbor for the query point q

- Nearest Neighboor: an example

SELECT parola, editdistance (parola, 'contorno') from parole order by 2 limit 5;
quattro terre
comparsa donna
scomparso nonno
volto
quattro

Range Query

Points p1,p8,pd are inside the circle

Range Query : an example

SELECT parola, editdistance (parola, 'contorno') from parole where editdistance(parola,'contorno') < = 5; quattro terre
comparsa donna
scomparso
nonno
volto
quattro

contorno
parola | editdistance

Similarity searches

- Instead of words we can use any kind of strings
- We can compare n-ple of values(a1,a2,.., an) that represents features of objects.

The dark side

- High dimensional spaces tipical 50,60 dimensions for each object
- A lot of memory
- A lot of time to calculate edit distance

The triangle inequality

$$
d(q, p 1)<=d(q, P v)+d(P v, P 1)
$$

Better solutions than brute force

The triangle inequality

Let (X, d) be a metric space, where X is the universe of valid objects and d is the metric of the space, and let U a subset of objects of $\mathrm{X}|\mathrm{U}|=\mathrm{n} \mathrm{U}$ is our database.
$(\mathrm{q}, \mathrm{r})=\{\mathrm{u}$ that belongs to U so that $\mathrm{d}(\mathrm{u}, \mathrm{q})<=r\}$ Range Query
Given a quey (q,r) and a set
triangle inequality it follows
also that $\mathrm{d}(\mathrm{pi}, \mathrm{q})<=\mathrm{d}(\mathrm{pi}, \mathrm{x})+\mathrm{d}(\mathrm{f}$
From boit inequailites, it fofere that a lower bound on d(a
Is $d(q, x)>=|d(p i, x)-d(p i, q)|-\frac{1}{l}$ objects u of interest are those that satisfy $d(q, u)<=r$, so all the objects that satisfy the exclusion condition can pe excluded, without actually evaiuating d(q,u)

Do you need some coffee ?

Are you still alive?

Yes?

Ok, Now we will enjoy :)

Building an Index - Pivoting

Some examples:
$d(P v, P 4)=1$
$d(P v, P 3)=2$
...... and so on

We can choose a point as pivot point and when we insert a new item we can precalculate the distance beetween our pivot and the new point

Building an Index - Pivoting

Building an Index - Range Query

Q is our query point

Building an Index - Range Query

Q is our query point

Building an Index - Range Query

$d(q, p v)=3$

Building an Index - Range Query

Building an Index - 2 Pivots

If we have 2 or more pivots we consider as candidate points all the point that are in the
intersections of the distance calculated among pivots

Building an Index - 2 Pivots

PGCON 2008 - OTTAWA

Building an Index - 2 Pivots

An example:

Range query query point q radius $r=2$

Building an Index - 2 Pivots

Other features

- We can implement an algoritm also for KNN queries using our index structure
- We can use an approximated editdistance function (using AC or PAC alghoritms) to minimize computational time.

Status of work

INDEX FOR METRIC SPACES

TO IMPROVE RANGE QUERIES AND K-NN QUERIES

The Future, but

...................................I'm alone

The End: we talked about

- Metric Spaces
- Approximate Searches
- Edit Distance
- Example
- Pivoting - Indexing
- Future issues

Bibliography

- My thesis :
- Searching in metric spaces
- Spaghettis: An Array Based Algorithm for Similarity Queries in Metric Spaces http://citeseer.ist.psu.edu/414510.html
- Overcoming the Curse of Dimensionality http://citeseer.ist.psu.edu/407814.html
- Fixed Queries Array: A Fast and Economical Data Structure for Proximity Searching http://citeseer.ist.psu.edu/ch01fixed.html

Contact Information

- Web Site: www.psql.it
- Email: scotty@psql.it
- Personal pages: www.enricopirozzi.info
- Email: info@enricopirozzi.info
- Skype contact: sscotty71
- Gtalk contact: sscotty71@gmail.com

License

This talk is copyright 2007 Enrico Pirozzi, and is licensed under the creative comp

