
 PostgreSQL Notification
Enhancements

PostgreSQL Notification
Enhancements

Presenter: Andrew Dunstan
Principal Consultant, Dunslane Consulting LLC

adunstan@postgresql.org

 PostgreSQL Notification
Enhancements

Where we are today
● A listener subscribes or unsubscribes to

notifications with LISTEN and UNLISTEN
● A notifier creates events with NOTIFY
● Both must be clients connected to the same

database
● PostgresSQL handles the mechanics

 PostgreSQL Notification
Enhancements

What is it good for?
● Many things!

– e.g. Job scheduling/coordinating
● Lots easier and more efficient than other

methods
– Especially for one to many notifications

● Can be called by Rules and Triggers

 PostgreSQL Notification
Enhancements

Current implementation
● pg_listener table:
 Column | Type | Modifiers
--------------+---------+-----------
 relname | name | not null
 listenerpid | integer | not null
 notification | integer | not null
● relname = event name (for historical reasons)

 PostgreSQL Notification
Enhancements

Mechanics – Listening / Unlistening
● LISTEN ⇒ new row (eventname, mypid, 0)
● UNLISTEN delete row⇒

 PostgreSQL Notification
Enhancements

Mechanics - Notifying
● NOTIFY ⇒ update pg_listener

set notifier = mypid
where relname = eventname

● NOTIFY ⇒ signal relevant backends
– If I am listening for this event, don't do this but

forward event to my frontend directly

 PostgreSQL Notification
Enhancements

Mechanics - Collection
● For each row where mypid = listener, forward

event to my frontend and set notifier back to 0.

 PostgreSQL Notification
Enhancements

Mechanics – Transactions
● NOTIFY / LISTEN / UNLISTEN actions only

applied on commit
– held in a backend local queue until then

● Collection happens in its own transaction (from
users POV between transactions)

 PostgreSQL Notification
Enhancements

Limitations
● Events can be lost!

– If the same event occurs between two calls on
collection by a backend, it will only see one of them

– Because pg_listener has one row per (event,
listener) pair.

● No provision for accompanying message

 PostgreSQL Notification
Enhancements

Payloads
● A message to accompany an event

– e.g. Event = “Batch Finished”, message = batch_id
● Already provision in V3 protocol for it
● Will make system design easier
● Reduce number of events listened for

 PostgreSQL Notification
Enhancements

And it looks like this
● NOTIFY stage1 'batch 57';

– Omitting the message is equivalent to an empty
message

– No breaking existing applications

 PostgreSQL Notification
Enhancements

New implementation scheme
● Based on existing shared cache invalidation

scheme
● Keep an event queue in shared memory
● Every event will be in the queue

– Once! (NOT once per listener)
● No listener registration needed
● Each listener has its own queue pointer

 PostgreSQL Notification
Enhancements

What do we need in shared
memory?

● Global queue head and tail pointers
● One queue tail pointer per backend
● Queue buffer – size configurable

– Entries contain database oid + length + event name
+ payload + alignment padding

– Conceptually circular

 PostgreSQL Notification
Enhancements

How much buffer space
● We hope enough not to block
● Average entry size ×

Maximum event burst rate ×
Maximum time waiting for collection

Listeners should not run long running transactions,
although notifiers can

 PostgreSQL Notification
Enhancements

Example
● Average entry size = 150
● Maximum event burst rate = 1event per second
● Maximum transaction time by listener = 1 hour

Buffer needed = 540,000 bytes

 PostgreSQL Notification
Enhancements

What should be the default?
● Those rates are probably a bit extreme

– 1 event per second is high
– 1 hour wait by a listener is very high

● PostgreSQL tends to be conservative,
especially about shared memory

● I am thinking of having a default around 100kB.

 PostgreSQL Notification
Enhancements

Adding an entry
● If there is room between head and tail, just add

it and adjust head
● If not, move tail forward to least of listener tails,

and if there is now enough room add it and
adjust head

● If not, signal listeners and sleep for a short
period before retrying

 PostgreSQL Notification
Enhancements

Collecting entries
● Check regularly – call from

CHECK_FOR_INTERRUPTS()
● For each entry from our tail to head, if db oid

matches our db and event name is in our event
list, collect entry

● Set our tail pointer to head

 PostgreSQL Notification
Enhancements

Locking
● Need 2 locks - “head” lock and “tail” lock.

– Adding entry requires exclusive “head” lock
– Adjusting tail requires exclusive “tail” lock
– Collecting entries requires “shared” tail lock.

● Because collecting entry doesn't change global tail
pointer

● Notifiers block each other, sometimes block
listeners. Listeners don't block each other.

 PostgreSQL Notification
Enhancements

Other functionality
● Since there is no pg_listener any more, we

need a function to tell us what events we're
listening on:

pg_listened_events(out event name)
returns setof record

● We can't have a function that tell us the events
every listener is listing for, as there is no longer
a central list of those.

 PostgreSQL Notification
Enhancements

Summary: Benefits + Risks
● Guaranteed delivery of all events, in order
● Payload messages
● Efficiency gain – should be much faster
● Potential downside: blocked notifiers if buffer is

too small or listeners are too slow

