

Bucardo
Postgres replication system

- Multi-master
- Master-slave

- Asynchronous

bucardo.org

Greg Sabino Mullane
End Point Corporation

● Bucardo History
● Backcountry.com multi-master need
● Existing system (Bucardo 1) to push changes
● Very asynchronous
● Slaves with different tables
● Other places now using it (bytea)

● Bucardo Requirements
● Perl
● Moose
● Pl/Perlu, Pl/pgsql (swap and pushdelta only)
● Postgres 8 (8.3 is best)

– HOT, replica hook, performance

● Bucardo Shortcomings
● Not widely used
● No smooth DDL handling
● Not for failover
● Bloat: pg_listener, q, bucardo_delta,

bucardo_track
● One developer
● No locking of slaves

● Bucardo Strengths
● Perl
● Drop in, no changes needed at all
● Interface
● Hooks!
● Multi-master
● Async to the extreme
● No locking of slaves

● Bucardo setup
● Add the schema somewhere
● Add databases to db table
● Add tables to goat table
● Herds, dbggroup
● Create a sync
● Automatic validation, creation.

● Bucardo Flow
● Triggers

– row-level: bucardo_delta

– Statement-level: NOTIFY

● bucardo_delta: ID, txn_time. Insert only!
● bucardo_track: who's done what?
● MCP, CTL, KID
● NOTIFY vs. timeout vs. kick.

● Bucardo Flow
● Join bucardo_delta with actual table. DISTINCT.
● Both sides.
● Rules, triggers, hooks, upsert, conflicts,

exceptions
● Update bucardo_track.

● Bucardo Flow
● NOTIFY (timeout, kick, trigger)
● MCP -> CTL
● CTL -> q table. Limits per targetdb, sourcedb
● KID -> q table. Keepalive

● Bucardo Syncs
● Fullcopy. Timeout/kick. truncate/COPY/done
● Pushdelta. Trigger. One way master-slave.
● Swap. Trigger. Two-way. Conflict resolution.

● Bucardo Anti-trigger
● ALTER TABLE DISABLE TRIGGER ALL;
● UPDATE pg_class..
● SET session_replication_role = 'replica';

– Thanks Jan!

● Bucardo Hooks
● Customcode
● Conflict handlers
● Exception - try again
● Pre and post trigger drop
● Row information - hashref
● Live changes
● Returned value - bitmapped (both!)
● Affect the replication event
● Example: cache invalidation

● Bucardo Interface
● ./bucardo_ctl
● ./bucardo_ctl stop “Adding new table - Greg”
● ./bucardo_ctl start “Adding new table - Greg”
● (logged + email)
● ./bucardo_ctl status foobar
● ./bucardo_ctl add table sales sync=orders
● ./bucardo_ctl kick foobar 0

● Bucardo Interface
● ./bucardo_ctl kick foobar 0
● [0s] ...
● [1s] alpha[1s] ...
● [2s] alpha[1s] gamma [2s] ...
● [4s] alpha [1s] gamma [2s] beta [4s] DONE!

● Bucardo Stuff
● Customselect (fullcopy)

– SELECT max(col1), col2 FROM foo GROUP BY 2;

● Email alerts
● Logging++
● Serialization, deadlocks.
● Cleanup: vacuum, purge_delta

● DBIx::Safe
● Like Safe.pm, but for database handles.
● Define what it can and cannot do.
● No commit, no rollback.
● Deep view 'read-only'
● Regex-based control.

● Bucardo Development
● Jan idea: supercopy
● Greg idea: supertriggers

– Automatic replication of new tables

● git.postgresql.org
● Win32 (fork, setsid)
● DDL and failover
● Master-master-master...
● Interface!
● Release early, release often

● Bucardo Questions?
● Mailing list at bucardo.org: regular and announce
● greg@endpoint.com

