
 Londiste
Replication system for PostgreSQL

About Londiste
 Londiste is easy to use asynchronous master/slave replication tool written in python

and is part of Skytools package.
 Skytools is a package containing PgQ module for Postgres, Python framework and

several tools built on top of it
 Londiste uses PgQ as transport layer therefore

it needs PgQ maintenance daemon called ticker.

 In Skype we use Londiste:
 to transfer online data into internal databases
 to create failover databases for online databases
 to upgrade PostgreSQL versions
 to distribute internally produced data

into online servers
 to create read only replicas for load balancing

shopdb
(failover 8.3)

analysisdb
(internal)

shopdb
(online 8.3)

shopdb_ro
(read only)

infodb
(internal)

shopdb
(failover 8.4)

Londiste
Skytools 2

Currently in use

Skytools 2: Londiste
 One Londiste process manages both provider and subscriber side

 For example Londiste process L3 manages tables replication from shopdb to
analysisdb

 Tables can be added/removed without affecting replication of other tables
 One process is not communicating with other processes
 pgqadm.py is used for ticking (T1)

 There is no support for SQL script execution
 There is no support for parallel copy
 There is no support for cascading

shopdb
(failover)

analysisdb
(internal)

shopdb
(online)

shopdb_ro
(read only)

L3

L1L2

T1

Skytools 2: Building from source tarball
 get latest tarball from:

http://pgfoundry.org/projects/skytools
 Dependencies:

 C compiler and GNU make

 PostgreSQL development headers and libraries

 Python development package
 Psycopg2

 install skytools
$./configure --prefix=/usr/local
$ make
$ make install

Skytools 2: Pgq setup

1. create the database
2. edit a PgQ daemon configuration file, say ticker.ini
3. install PgQ internal tables

$ pgqadm.py ticker.ini install
4. launch the PgQ ticker on database machine as daemon

$ pgqadm.py -d ticker.ini ticker

Since Londiste uses PgQ as transport layer you need to set it up first.
Basic PgQ setup would be illustrated by the following steps:

L3
londiste

T1
ticker

queue

source table
trigger

target table

 ticks

shopdb analysisdb

Skytools 2: Ticker configuration
[pgqadm]
job_name = T1
db = dbname= shopdb

logfile = ~/log/%(job_name)s.log
pidfile = ~/pid/%(job_name)s.pid

L3
londiste

T1
ticker

queue

source table
trigger

target table

 ticks

shopdb analysisdb

Skytools 2: Londiste setup
1. edit a londiste configuration file, lets say conf.ini
2. install londiste on the provider and subscriber databases. This step

requires admin privileges on both provider and subscriber sides,
and both install commands can be run remotely:
$ londiste.py conf.ini provider install
$ londiste.py conf.ini subscriber install

3. check that you have ticker running:
$ ps -ef | grep ticker

4. launch the londiste replay process:
$ londiste.py -d conf.ini replay

5. add table to replicate from the provider database:
$ londiste.py conf.ini provider add table1

6. add table to replicate to the subscriber database:
$ londiste.py conf.ini subscriber add table1

Skytools 2: Londiste Configuration
[londiste]
job_name = L3
pgq_queue_name = shopdb_replica
provider_db = dbname=shopdb
subscriber_db = dbname=analysisdb

logfile = ~/log/%(job_name)s.log
pidfile = ~/pid/%(job_name)s.pid

L3
londiste

T1
ticker

queue

source table
trigger

target table

 ticks

shopdb analysisdb

Londiste
Skytools 3

Are We there yet?

Skytools 3: Keep good features from SkyTools 2
 Londiste process connects to only 2 databases
 Londiste only pulls data from queue

 Administrative work happens in separate process (ticker)
 Downtime of one Londiste process doesn't affect other replication or queue

processes
 Relaxed attitude about tables

 Adding/removing a table doesn't affect replication of other tables
 no attempt is made to keep consistent picture between tables during initial copy

Skytools 3: New in Londiste
 Parallel copy - during initial sync several tables can be copied at the same time.
 EXECUTE command, to run SQL script on all nodes.
 Automatic table or sequence creation by importing the structure from provider node.
 Cascading support

 Its goal is to keep identical copy of queue contents in several nodes.
 Advanced admin operations: switchover, change-provider, pause/resume
 Londiste process manages target node only

Skytools 3: Cascading
 set – group of nodes that distribute a single queue
 node – database that participates in cascade set
 node types:

 root – master node of a cascade set
 branch – node that carries full contents of the queue (can be provider)
 leaf – data-only node (events are replicated, but can't be provider to other

nodes)

shopdb
(fo, branch)

analysisdb
(internal, leaf)

shopdb
(online, root)

shopdb_ro
(ro, leaf)

L4

L3
L2

T1

L1

T3

Skytools 3: Building from source tarball
It is not a polished release, but a snapshot of current development tree.
Although it may happen to have couple of working use-cases.

 get latest tarball:
http://skytools.projects.postgresql.org/testing/skytools-3.0a1.tgz

 Dependencies:
 C compiler and GNU make

 PostgreSQL development headers and libraries

 Python development package
 Psycopg2

 $./configure --prefix=/usr/local
 $ make
 $ make install

http://skytools.projects.postgresql.org/testing/skytools-3.0a1.tgz

Skytools 3: setup replica
1. edit a londiste configuration file, lets say L1.ini
2. Install Londiste and initialize nodes:

$ londiste L1.ini create-root shopdb dbname=shopdb

$ londiste L2.ini create-leaf shopdb_ro
 dbname=shopdb_ro --provider=dbname=shopdb

$ londiste L3.ini create-branch shopdb_T3
 dbname=shopdb –provider=dbname=shopdb

$ londiste L4.ini create-leaf analysisdb
 dbname=analysisdb --provider=dbname=shopdb

[londiste]
job_name = L1
db = dbname=shopdb
queue_name = shopdb_replica
logfile = log/%(job_name)s.log
pidfile = pid/%(job_name)s.pid

shopdb
(fo, branch)

analysisdb
(internal, leaf)

shopdb
(online, root)

shopdb_ro
(ro, leaf)

L4

L3L2

T1

L1

T3

Skytools 3: setup replica
3. edit a ticker configuration file, lets say T1.ini
4. run ticker:

$ pgqadm T1.ini ticker -d

$ pgqadm T3.ini ticker -d

5. run Londiste:

$ londiste L1.ini replay -d
$ londiste L2.ini replay -d
$ londiste L3.ini replay -d
$ londiste L4.ini replay -d

[pgqadm]
job_name = T1
db = dbname=shopdb
logfile = log/%(job_name)s.log
pidfile = pid/%(job_name)s.pid

shopdb
(fo, branch)

analysisdb
(internal, leaf)

shopdb
(online, root)

shopdb_ro
(ro, leaf)

L4

L3L2

T1

L1

T3

Skytools 3: Advanced admin operation examples

1. Shopdb failover can be done with one command
$ londiste L1.ini switchover --target=shopdb_T3

2. Analysisdb can change provider with command
$ londiste L4.ini change-provider --target=shopdb_T3

shopdb
(fo, branch)

analysisdb
(internal, leaf)

shopdb
(online, root)

shopdb_ro
(ro, leaf)

L4

L3L2

T1

L1

T3

shopdb
(online, root)

analysisdb
(internal, leaf)

shopdb
(fo, branch)

shopdb_ro
(ro, leaf)

L4

L3L2

T1

L1

T3

In example Ticker process T1 for shopdb (online) and T3 for shopdb (fo).
Londiste process L1 is root, L3 is branch, L2 and L4 are leaf.

shopdb
(online, root)

analysisdb
(internal, leaf)

shopdb
(fo, branch)

shopdb_ro
(read only, leaf)

L4

L3L2

T1

L1

T3

A

C B

Extras

Ticker
 Ticker reads event id sequence for each queue.
 If new events have appeared, then inserts tick if:

 Configurable amount of events have appeared
ticker_max_count (500)

 Configurable amount of time has passed from last tick
ticker_max_lag (3 sec)

 If no events in the queue, creates tick if some time has passed.
 ticker_idle_period (60 sec)

 extra parameters in configuration file:
 how often to run maintenance [seconds]

maint_delay = 600
 how often to check for activity [seconds]

loop_delay = 0.5

Skytools 3: Building from GIT
It is for people who don't fear work-in-progress code and are prepared to
give feedback on issues. Especially welcome would be people who could
submit code/doc patches, to help us bring the final 3.0 release faster.

 fetch git tree:
$ git clone git://github.com/markokr/skytools-dev.git

 fetch libusual submodule:
$ git submodule init
$ git submodule update

 generate ./configure script
$ make boot

 now build as usual (--with-asciidoc is required when building from GIT)
$./configure --prefix=... --with-asciidoc
$ make
$ make install

References
 http://skytools.projects.postgresql.org/doc/londiste.ref.html
 http://wiki.postgresql.org/wiki/Londiste_Tutorial
 http://skytools.projects.postgresql.org/skytools-3.0/doc/skytools3.html
 http://pgfoundry.org/projects/skytools

http://skytools.projects.postgresql.org/doc/londiste.ref.html
http://wiki.postgresql.org/wiki/Londiste_Tutorial
http://skytools.projects.postgresql.org/skytools-3.0/doc/skytools3.html
http://pgfoundry.org/projects/skytools

