
How to Get Your PostgreSQL
Patch Accepted

BRUCE MOMJIAN, ENTERPRISEDB
TOM LANE, RED HAT

Abstract
Developing a patch for the POSTGRESQL project is a fairly complex process, and
success is not guaranteed. This talk will suggest many ways to improve your
chances of submitting a successful patch to the PostgreSQL community.

http://momjian.us/presentations

Know the Community Values:
Is it This?

http://www.friedmanarchives.com
How to Get Your PostgreSQL Patch Accepted 1

Or This?

The PostgreSQL codebase is 20+ years old, and is built expecting
another twenty. Code designed for a long life-cycle has more stringent
requirements.
How to Get Your PostgreSQL Patch Accepted 2

Start Simple

How to Get Your PostgreSQL Patch Accepted 3

Gain Experience Before
Attempting Complex Tasks

How to Get Your PostgreSQL Patch Accepted 4

Don’t Start Here

Karoly Arvai/Reuters

How to Get Your PostgreSQL Patch Accepted 5

Everyone Is Watching

Coding in public can be uncomfortable.
How to Get Your PostgreSQL Patch Accepted 6

Be Prepared to be Humbled

MXC

How to Get Your PostgreSQL Patch Accepted 7

Sometimes You
Have to Do it Over

Most patches take several attempts.

Sisyphus by Titian
How to Get Your PostgreSQL Patch Accepted 8

Get Agreement

Don’t Isolate Yourself

How to Get Your PostgreSQL Patch Accepted 9

Design the Interface First

Define the new behavior, and get community agreement.

LG Corp.
How to Get Your PostgreSQL Patch Accepted 10

Interface Details
� Will the user interact with this new feature? If so, how?

� What is the syntax?

� What is the exact semantics/behavior?

� Are there any backward compatibility issues?

� Get community buy-in at this level of detail before you start coding.

How to Get Your PostgreSQL Patch Accepted 11

Implementation Mechanics Second

How will the new behavior be implemented?

How to Get Your PostgreSQL Patch Accepted 12

Implementation Details
� What subsystems and C files will be modified?

� How does it interact with other database features?

� How will error conditions be handled?

� Are there any system catalog changes?

� Are there any dump/restore issues? If so, fix pg_dump.

� Does psql need to be modified?

How to Get Your PostgreSQL Patch Accepted 13

Formatting Matters

main(int c,char**v){return!m(v[1],v[2]);}m(char*s,char*t){return*t-

42?*s?63==*t|*s==*t&&m(s+1,t+1):!*t:m(s,t+1)||*s&&m(s+1,t);}

The International Obfuscated C Code Contest

How to Get Your PostgreSQL Patch Accepted 14

Formatting Details
� Four-space tabs

� BSD brace style

� Pgindent cures some ills, but not all

� Mimic surrounding code

How to Get Your PostgreSQL Patch Accepted 15

Naming Matters

How to Get Your PostgreSQL Patch Accepted 16

Naming Details
� thisStyleIsOkay

� this_is_okay_too

� besttoavoidthis

� MimicAdjacentCode

� szNotHungarian

How to Get Your PostgreSQL Patch Accepted 17

Match Your Surroundings

How to Get Your PostgreSQL Patch Accepted 18

Match Details
� Match the style of the surrounding code, even if it differs from other

areas

� Don’t use #ifdef ’s to enable your changes

� Comments are for clarification, not for delineating your code from its
surroundings

� Do not add your name to the code (the release notes will immortalize
your contribution)

How to Get Your PostgreSQL Patch Accepted 19

Who Needs Comments?

for (i = 0; i < len; i ++)
{
 char ch = text [i] ;

 if (ch >= ’A’ && ch <= ’Z’)
 ch += ’a’ − ’A’;
 word [i] = ch;
}
word [len] = ’\0’;

low = &ScanKeywords [0] ;
high = LastScanKeyword − 1;
while (low <= high)
{
 const ScanKeyword * middle;
 int difference;

 middle = low + (high − low) / 2;
 difference = strcmp(middle −>name, word) ;
 if (difference == 0)
 return middle;
 else if (difference < 0)
 low = middle + 1;
 else
 high = middle − 1;
}

How to Get Your PostgreSQL Patch Accepted 20

We Need Comments

/*
 * Apply an ASCII−only downcasing. We must not use tolower() since it may
 * produce the wrong translation in some locales (eg, Turkish).
 */
for (i = 0; i < len; i ++)
{
 char ch = text [i] ;

 if (ch >= ’A’ && ch <= ’Z’)
 ch += ’a’ − ’A’;
 word [i] = ch;
}
word [len] = ’\0’;

/*
 * Now do a binary search using plain strcmp() comparison.
 */
low = &ScanKeywords [0] ;
high = LastScanKeyword − 1;
while (low <= high)
{
 const ScanKeyword * middle;
 int difference;

 middle = low + (high − low) / 2;
 difference = strcmp(middle −>name, word) ;
 if (difference == 0)
 return middle;
 else if (difference < 0)
 low = middle + 1;
 else
 high = middle − 1;
}

How to Get Your PostgreSQL Patch Accepted 21

Sometimes A Long Comment Is Necessary

/*
 * Replace correlation vars (uplevel vars) with Params.
 *
 * Uplevel aggregates are replaced, too.
 *
 * Note: it is critical that this runs immediately after SS_process_sublinks.
 * Since we do not recurse into the arguments of uplevel aggregates, they will
 * get copied to the appropriate subplan args list in the parent query with
 * uplevel vars not replaced by Params, but only adjusted in level (see
 * replace_outer_agg). That’s exactly what we want for the vars of the parent
 * level −−− but if an aggregate’s argument contains any further−up variables,
 * they have to be replaced with Params in their turn. That will happen when
 * the parent level runs SS_replace_correlation_vars. Therefore it must do
 * so after expanding its sublinks to subplans. And we don’t want any steps
 * in between, else those steps would never get applied to the aggregate
 * argument expressions, either in the parent or the child level.
 *
 * Another fairly tricky thing going on here is the handling of SubLinks in
 * the arguments of uplevel aggregates. Those are not touched inside the
 * intermediate query level, either. Instead, SS_process_sublinks recurses
 * on them after copying the Aggref expression into the parent plan level
 * (this is actually taken care of in build_subplan).
 */
Node *
SS_replace_correlation_vars (PlannerInfo * root, Node * expr)
{
 /* No setup needed for tree walk, so away we go */
 return replace_correlation_vars_mutator (expr, root) ;
}

How to Get Your PostgreSQL Patch Accepted 22

Style Details
� Proper naming can reduce need for comments

� Comment anything that could be unclear

� Use /*----- comment blocks if you want to preserve line breaks in
comments

� Use ANSI C (C89), not C99

– No // comments
– Variable declarations only at the top of code blocks ({})

How to Get Your PostgreSQL Patch Accepted 23

The Importance of Testing

Because it is best to test without passengers.

How to Get Your PostgreSQL Patch Accepted 24

Testing Details
� Do existing regression tests pass? Are there intentional changes?

� Are new regression tests needed?

� Does initdb work?

� Are there any nonportable constructs? The buildfarm will quickly
report them once the code is committed to CVS, which can be
embarrassing.

How to Get Your PostgreSQL Patch Accepted 25

Documentation Matters

How to Get Your PostgreSQL Patch Accepted 26

Documentation Details
� Are new commands or new options supported? Add/update reference

pages.

� Do administrators need to know about this change? Add to
administration section.

� Is this a new function? Add it to the functions documentation.

� Is there a documentation section that covers this behavior? Does it
need adjustment?

How to Get Your PostgreSQL Patch Accepted 27

Conclusion

"The electric light has caused me the greatest amount of study and has required the most elaborate experiments,"
Thomas Edison wrote. "I was never myself discouraged, or inclined to be hopeless of success. I cannot say the same for
all my associates."

"Genius is one percent inspiration and ninety-nine percent perspiration."

Thomas Edison
How to Get Your PostgreSQL Patch Accepted 28

