
Rapid Upgrades With Pg_Migrator

BRUCE MOMJIAN,
ENTERPRISEDB

May, 2009

Abstract
Pg_Migrator allows migration between major releases of Postgres
without a data dump/reload. This presentation explains how
pg_migrator operates.

http://momjian.us/presentations



Why Pg_Migrator
� Very fast upgrades

� Optionally no additional disk space

Rapid Upgrades With Pg-Migrator 1



Other Upgrade Options
� dump/restore

� Slony

Rapid Upgrades With Pg-Migrator 2



How It Works: Initial Setup

1

2

3 6

5

4 7

8

9

pg_class

User Tables

15 21 27

262014

13 19 25

241812

17 2311

10 16 22

System Tables

clog

Old Cluster

1

2

3 6

5

4 7

8

9

pg_class

User Tables

System Tables

clog

New Cluster

Rapid Upgrades With Pg-Migrator 3



Decouple New Clog Via Freezing

1

2

3 6

5

4 7

8

9

pg_class

User Tables

15 21 27

262014

13 19 25

241812

17 2311

10 16 22

System Tables

clog

Old Cluster

1

2

3 6

4 7

8

9

pg_class

User Tables

System Tables

clog

New Cluster

5Freeze

X X

Rapid Upgrades With Pg-Migrator 4



Transfer Clog and XID

1

2

3 6

5

4 7

8

9

pg_class

User Tables

15 21 27

262014

13 19 25

241812

17 2311

10 16 22

System Tables

clog

Old Cluster

1

2

3 6

5

4 7

8

9

pg_class

User Tables

System Tables

clog

New Cluster

controldata controldataxid

Rapid Upgrades With Pg-Migrator 5



Get Schema Dump

1

2

3 6

5

4 7

8

9

pg_class

User Tables

15 21 27

262014

13 19 25

241812

17 2311

10 16 22

System Tables

clog

Old Cluster

1

2

3 6

5

4 7

8

9

pg_class

User Tables

System Tables

clog

New Cluster

pg_dumpall - -schema

Rapid Upgrades With Pg-Migrator 6



Reserve TOAST OIDs Using Relfilenodes

1

2

3 6

5

4 7

8

9

pg_class

User Tables

15 21 27

262014

13 19 25

241812

17 2311

10 16 22

System Tables

clog

Old Cluster

1

2

3 6

5

4 7

8

9

pg_class

User Tables

26

18

System Tables

clog

New Cluster

This is necessary because heap references to TOAST tables contain the
TOAST oids for easy lookup.
Rapid Upgrades With Pg-Migrator 7



Restore Schema In New Cluster

1

2

3 6

5

4 7

8

9

pg_class

User Tables

15 21 27

262014

13 19 25

241812

17 2311

10 16 22

System Tables

clog

Old Cluster

1

2

3 6

5

4 7

8

9

pg_class

User Tables

2640

39

31

System Tables

clog

New Cluster

pg_dumpall - -schema

30

32

33

34

35

36

37

41

42

43

44

45

47

18

Rapid Upgrades With Pg-Migrator 8



Connect TOAST Placeholders To the Proper Relations

1

2

3 6

5

4 7

8

9

pg_class

User Tables

15 21 27

262014

13 19 25

241812

17 2311

10 16 22

System Tables

clog

Old Cluster

1

2

3 6

5

4 7

8

9

pg_class

User Tables

26

39

31

System Tables

clog

New Cluster

30

32

33

34

35

36

37

42

43

44

45

47

18

41

40

X

Rapid Upgrades With Pg-Migrator 9



Copy User Heap/Index Files

1

2

3 6

5

4 7

8

9

pg_class

User Tables

15 21 27

262014

13 19 25

241812

17 2311

10 16 22

System Tables

clog

Old Cluster

1

2

3 6

5

4 7

8

9

pg_class

User Tables

2640

39

31

System Tables

clog

New Cluster

30

32

33

34

35

36

37

42

43

44

45

47

18

41

Rapid Upgrades With Pg-Migrator 10



Complete

1

2

3 6

5

4 7

8

9

pg_class

User Tables

15 21 27

262014

13 19 25

241812

17 2311

10 16 22

System Tables

clog

Old Cluster

1

2

3 6

5

4 7

8

9

pg_class

User Tables

2640

39

31

System Tables

clog

New Cluster

30

32

33

34

35

36

37

42

43

44

45

47

18

41

Rapid Upgrades With Pg-Migrator 11



How It Works: In Detail
� Check for cluster compatability

– locale
– encoding
– integer datetimes (default changed from 8.3 -> 8.4)

� Use pg_dumpall to dump old cluster schema (no data)

� Freeze all new cluster rows (remove reference to clog entries)

� Rename tablespaces to *_old

� New cluster uses old xid counter value (see freeze above)

– Set system table frozen xids to match the current xid

� Create new users/databases
Rapid Upgrades With Pg-Migrator 12



� Collect cluster information

� Install support functions that call internal backend functions

� Create placeholder files to reserve relfilenode file names

� Create schema in new cluster

� Adjust new cluster to use reserved relfilenode names

– Delete placeholder toast relfilenode files
– Remove new cluster toast tables
– Create new cluster toast table using reserved relfilenode
– Assign new toast tables with proper relfilenodes to relations

� Copy or link files from old cluster to new cluster

– Toast tables have the same relfilenodes as in the old cluster

� Warn about any remaining issues, like REINDEX requirements

Rapid Upgrades With Pg-Migrator 13



Sample Run: Validation 1

Performing consistency checks

-----------------------------

Checking old data directory /u/pgsql.old/data

checking base ok

checking global ok

checking pg_clog ok

checking pg_multixact ok

checking pg_subtrans ok

checking pg_tblspc ok

checking pg_twophase ok

checking pg_xlog ok

Checking new data directory /u/pgsql/data

checking base ok

checking global ok

checking pg_clog ok

checking pg_multixact ok

checking pg_subtrans ok

checking pg_tblspc ok

checking pg_twophase ok

checking pg_xlog ok

Checking binaries in old cluster (/u/pgsql.old/bin)

checking postgres ok

checking pg_ctl ok

checking pg_dumpall ok

Rapid Upgrades With Pg-Migrator 14



Sample Run: Validation 2

Checking binaries in new cluster (/u/pgsql/bin)

checking postgres ok

checking pg_ctl ok

checking pg_dumpall ok

checking psql ok

Starting postmaster to service old cluster

waiting for postmaster to start ok

Creating catalog dump ok

Splitting old dump file ok

Checking for invalid ’name’ user columns ok

Stopping postmaster servicing old cluster ok

Starting postmaster to service new cluster

waiting for postmaster to start ok

Stopping postmaster servicing new cluster ok

*Checks complete*

| If pg_migrator fails after this point, you must

| re-initdb the new cluster before continuing.

| You will also need to rename your old tablespace

| directories to remove the ".old" suffix before

| continuing.

Rapid Upgrades With Pg-Migrator 15



Sample Run: Migration

Performing migration

--------------------

Starting postmaster to service new cluster

waiting for postmaster to start ok

Analyzing all rows on the new cluster ok

Freezing all rows on the new cluster ok

Stopping postmaster servicing new cluster ok

Renaming tablespaces to *.old ok

Deleting old commit clogs ok

Copying commit clogs ok

Setting next transaction id for new cluster ok

Resetting WAL archives ok

Starting postmaster to service new cluster

waiting for postmaster to start ok

Setting frozenxid counters in new cluster ok

Creating databases in new cluster ok

Adding support functions to new cluster ok

Creating placeholder relfiles for toast relations ok

Restoring database schema ok

Restoring relations to use fixed toast file names ok

Restoring user relations ok

Stopping postmaster servicing new cluster ok

Setting next oid for new cluster ok

*Upgrade complete*

| Optimizer statistics and free space information is not transfered by

| pg_migrator, so consider running ’vacuumdb --all --analyze’

| on the newly-upgraded database.

Rapid Upgrades With Pg-Migrator 16



Possible Post-8.4 Data
Format Changes

� clog

� heap page format

� page header, include bitmask

� tuple header, including bitmask

� data value format

� index page format

Rapid Upgrades With Pg-Migrator 17



Migration Timings

Migration Method Minutes
dump/restore 300.0
dump with parallel restore 180.0
pg_migrator in copy mode 44.0
pg_migrator in link mode 0.7

Database size: 150GB, 850 tables

The last duration is 44 seconds.

Timings courtesy of

Stefan Kaltenbrunner

(mastermind on IRC)

Rapid Upgrades With Pg-Migrator 18



Conclusion

Rapid Upgrades With Pg-Migrator 19


