
Application
Authorization
with SET ROLE
Aurynn Shaw, Command Prompt, Inc.

PGCon 2010

Thursday, May 20, 2010

Hi

Thursday, May 20, 2010

Hi

• Aurynn Shaw

• DBA/Lead Dev/PM/etc @ Command Prompt

Thursday, May 20, 2010

And now I talk more

* Today we’re talking about AuthZ in PG
* Benefits, drawbacks, and a quick
implementation walkthrough
* Why you should even be doing this

Thursday, May 20, 2010

Permissions Systems

Thursday, May 20, 2010

Permissions Systems

• Data I can access

Thursday, May 20, 2010

Permissions Systems

• Data I can access

• Data I can’t access

* Postgres handles this
through standard GRANT and
REVOKE statements.

* Most app fabrics handle
this away from the data.

Thursday, May 20, 2010

App-focused Design
* Easy enough to use the app to handle permissions
* Few-no restrictions on application powers.
* Permissions happen when the logic happens

Thursday, May 20, 2010

Data Layer Disconnect
* App-focus development treats the DB as a dumb store
* Because the app embodies the AuthZ, the data fabric is at its
most malleable.
* Nothing stops a malicious, or badly-written app from unlimited
data modification
* Relying on a limited number of eyeballs to look for bugs

Thursday, May 20, 2010

DB-focused Design
* Much tighter binding to the data layer
* We can put permissions into the database, GRANT and REVOKE!
Not a problem!
* Creating a user, not a problem. Everything can just work!

Thursday, May 20, 2010

AuthZ is closely
coupled to your login

* Poolers, especially, have only a defined login
* Forced into the broadest permissions set available
* Can’t attempt to restrict the data malleability - everything your
app needs to do, your login has to be able to do, regardless of whether
the user should.

Thursday, May 20, 2010

Wait, I lied.
* Your login DOES embody your core permissions, but,
there’s this great permissions-swapping feature in PG.

Thursday, May 20, 2010

SET ROLE TO stun;

* I’ve seen this before! It’s like a Unix system!
* So, SET ROLE is the funky mojo
* Similar to SET AUTHORIZATION
* Can be unwound - a very valuable aspect.

Hey, this is in the talk title!

Thursday, May 20, 2010

Can only switch to
roles already in your

tree
only allows you to become roles you would have been able to be
already - you can’t just become a superuser, unless you already
are one.
* By default, all the roles you have are already part of your
user

Thursday, May 20, 2010

Why SET ROLE is
interesting

* Can swap permissions dynamically, without compromising the
base connection
* Vital in any pooled environment - long-lived connections don't
need to be reset.
* Trusted apps can easily set the data fabric to just the
permissions they need
* Can never exceed base fabric permissions

Thursday, May 20, 2010

Transactional, too!
* Single transactions can be in their own permissions space
* Automatic, implicit RESET ROLE command on ROLLBACK

Thursday, May 20, 2010

Transactional, too!

template1=# BEGIN;
BEGIN
template1=# SET ROLE test;
SET
template1=> ROLLBACK;
ROLLBACK
template1=#

A quick example.

Thursday, May 20, 2010

Transactional, too!
test=> BEGIN;

BEGIN

test=> SET ROLE test;

SET

test=> SELECT * FROM test;

--

(0 rows)

test=> ROLLBACK;

ROLLBACK

test=> SELECT * FROM test;

ERROR: permission denied for relation test

And another

Thursday, May 20, 2010

Well, partly.

template1=# BEGIN;
BEGIN
template1=# SET ROLE test;
SET
template1=> COMMIT;
COMMIT
template1=>

So it doesn’t
quite work like
you’d expect for
a committed
transaction.

Thursday, May 20, 2010

So always RESET ROLE

template1=# BEGIN;
BEGIN
template1=# SET ROLE test;
SET
template1=> COMMIT;
COMMIT
template1=> RESET ROLE;
RESET
template1=#

So it doesn’t
quite work like
you’d expect for
a committed
transaction.

Thursday, May 20, 2010

Our Why
* Explored this to support a large Web application with very clear-cut access rules: A
resource either is or isn’t accessible.

* In-app frameworks were insufficient - and not useful when we needed external
software- Rewriting perms is a pain.

Thursday, May 20, 2010

Other Cool Whys
* Single definition of our permissions model, as close to the relevant data as possible.

* Don't Repeat Yourself

* Non-trusted clients can't manipulate your data fabric beyond your whim - you
already have strong permissions on the data itself.

Thursday, May 20, 2010

But there’s all those
other permissions

systems...

* Lots, in a variety of languages
* Including that one you’re working on right now
* And that other one YOU LOVE.
* Should you use them? They work, to a point
* Valuable aspect of the permissions setup
* Exclusive use ends up looking like THIS

Thursday, May 20, 2010

This

• Data I can access

• Data I can’t access

• Data I shouldn’t access, but can

* Normal pooled application, single credentials relies on app to
handle auth
* Never more than a strong warning about not using a resource,
and some unfriendly language from your DBA.

Thursday, May 20, 2010

Principle of Least
Permission

* You should never have more ability than you need.
* Any time you do, Bad Things can happen.
* In-app permissions systems tend to violate this

Stolen from Steven Frost

Thursday, May 20, 2010

Implementation
(it’s easy)

So, let’s look at how to go about implementing a SET ROLE-based system in your
application framework.
It’s surprisingly easy to do, too!
Let’s begin.

Thursday, May 20, 2010

GRANT and Revoke

First, a fairly core component is that you have to go through and GRANT, and
REVOKE the various tables and views and suchly that make up your database.

Thursday, May 20, 2010

REVOKE
test=# CREATE TABLE test ();
CREATE TABLE
test=# REVOKE ALL ON test FROM PUBLIC;
REVOKE
test=# SET ROLE TO test;
SET
test=> SELECT * FROM test;
ERROR: permission denied for relation
test
test=>

A simple REVOKE example.

Thursday, May 20, 2010

GRANT
test=> SET ROLE TO aurynn;
SET
test=# GRANT ALL ON test TO test;
GRANT
test=# SET ROLE TO test;
SET
test=> SELECT * FROM test;
--
(0 rows)
test=>

And a GRANT

Thursday, May 20, 2010

A Permissions Tree

Next, a permissions tree.
This aspect of a SET ROLE design is really, really, really dependent on your
application structure.
To really get the most benefit from a SET ROLE environment, you should spend some
time laying out every single last permission that you want to have - as fine-
grained as you can. This ends up being very valuable later, when you need to add less
trustworthy clients.

Thursday, May 20, 2010

A Permissions Tree

CREATE ROLE content_read NOLOGIN;
CREATE ROLE content_write NOLOGIN;
CREATE ROLE content_delete NOLOGIN;

Thursday, May 20, 2010

A Permissions Tree

CREATE ROLE user_base NOLOGIN;
GRANT content_read TO user_base;
GRANT content_write TO user_base;
CREATE ROLE admin_base NOLOGIN;
GRANT content_delete TO admin_base;
GRANT user_base TO admin_base;

Thursday, May 20, 2010

Your final node points
user, admin, moderator, etc.

Your final node points are the specific roles that a given user is going to be granted
into - users, moderators, administrators, whatever. Your software would then issue
SET ROLE TO your_user_role at the beginning of your transaction.

Caveat: Custom permissions are hard.

Thursday, May 20, 2010

Permissions Endpoints

CREATE USER user NOINHERIT;
GRANT user_base TO user;
CREATE USER admin NOINHERIT;
GRANT admin_base TO admin;

Thursday, May 20, 2010

NOINHERIT

The next piece is NOINHERIT. Right now, without this, you’d not exactly be
restricting your permissions set - just granting the full set of useful permissions
to a more limited, non-superuser user.
Pretty much exactly the same as before.

With NOINHERIT, we mark that those endpoint roles that we just defined aren’t
applied to our login role - we have to explicitly SET ROLE to grab those permissions.

Thursday, May 20, 2010

A fully REVOKE’d, login
user

* The credentials that the application/pooler/whatever uses to connect.
* This has pretty much every single possible permission, removed. All this role can
do is SET ROLE to a different role, and pick up those permissions.
* By default, no connections can actually do anything useful.

Thursday, May 20, 2010

Application
Modifications

Lastly, modify your application. It’s somewhat obvious, but it has to be said.

Thursday, May 20, 2010

It’s just that easy!

You’ve now successfully integrated a SET ROLE-based permissions system into your
application.
It’s just that easy.

Thursday, May 20, 2010

It’s not quite that easy

Well, it’s almost that easy. There are some bits that you do have to pay attention
to, that you wouldn’t otherwise

I lied again.

Thursday, May 20, 2010

It’s not quite that easy

• You have to catch permissions errors

At least in Python’s psycopg2,
permissions errors aren’t mapped
to something useful - you have to
handle it yourself.

Thursday, May 20, 2010

Plug, the shameless
kind

• Exceptable, an exception-trapping
library for Python

Thursday, May 20, 2010

Plug, the shameless
kind

• Exceptable, an exception-trapping
library for Python

• Turns PG exceptions into smarter
Python exceptions.

Thursday, May 20, 2010

Plug, the shameless
kind

• Exceptable, an exception-trapping
library for Python

• Turns PG exceptions into smarter
Python exceptions.

• We could use help with this -
other language support &c.

Thursday, May 20, 2010

It’s not quite that easy

• You have to catch permissions errors

• It’s really coarsely grained

For one, this is fairly coarse-
grained - you can restrict tables,
but not individual
rows in those tables. For that,
there's nothing to be done but
write a stored procedure,
or a view that checks whether or
not the user *can* read those
roles.

The same applies for writes,
obviously - but, that's a bit easier
to solve with triggers to
verify per-row permissions, as
opposed to the per-table
permissions.

Thursday, May 20, 2010

It’s not quite that easy

• You have to catch permissions errors

• It’s really coarsely grained

• Requires modifications to the DB interface

* You need to add the SET ROLE
mojo before you start running
queries

Thursday, May 20, 2010

It’s not quite that easy

• You have to catch permissions errors

• It’s really coarsely grained

• Requires modifications to the DB interface

• Adds additional wire traffic

You actually have to send the SET
ROLE and possibly RESET ROLE
commands.

Thursday, May 20, 2010

It’s not quite that easy

• You have to catch permissions errors

• It’s really coarsely grained

• Requires modifications to the DB interface

• Adds additional wire traffic

• Just as vulnerable to SQL injection as you were
before

This doesn’t give you any real
additional protection against SQL
injection attacks - it’s pretty
much security-by-obscurity at
best, by requiring SET ROLE before
your injection.
It does, however, grant you
protection against random
DELETE and DROP crap, which is
good for something.

Thursday, May 20, 2010

So always sanitize your
inputs.

It’s just good data hygiene. Like brushing your teeth.

Thursday, May 20, 2010

It’s not quite that easy

• You have to catch permissions errors

• It’s really coarsely grained

• Requires modifications to the DB interface

• Adds additional wire traffic

• Just as vulnerable to SQL injection as you were
before

• Not entirely transactional

As I showed you before, it’s not
really transactional - you have
to pay pretty close attention to
your RESET ROLE statements.

Thursday, May 20, 2010

set session_authorization

* The difference between SET ROLE and SET session_auth is a matter of semantics,
mostly - both achieve the same effect.
* set session_authorization changes what roles are available to SET to, though

Thursday, May 20, 2010

set session_authorization
test=# SET SESSION_AUTHORIZATION TO pgcon;
SET
test=> SET ROLE TO aurynn;
ERROR: permission denied to set role
"aurynn"
test=> SET SESSION_AUTHORIZATION TO
aurynn;
SET
test=#

* Remarkably similar
* alters what roles are reachable from future SET
ROLE requests.
* Useful from perspective of additonal layers of
restriction over the connection

Thursday, May 20, 2010

So that’s it.
Any questions?

Thursday, May 20, 2010

Thank you!

Slides will be available.

Thursday, May 20, 2010

