
PostgreSQL on Amazon

Christophe Pettus
PostgreSQL Experts, Inc.

christophe.pettus@pgexperts.com

mailto:christophe.pettus@pgexperts.com
mailto:christophe.pettus@pgexperts.com

Selection bias.

• Cops mostly meet criminals.

• Doctors mostly meet sick people.

• Database consultants mostly meet people
with serious database problems.

• Our contact with AWS was companies with
database meltdowns.

My Opinion of PostgreSQL on
Amazon, through 2010.

Don’t do that!
You’ll kill yourself!

This didn’t scale.

• 65%+ of new clients were running on
Amazon.

• Were not interested in being told, “Oh, just
redo your whole technical architecture.”

• In fact, many were good matches for AWS.

A more nuanced view was required.

Welcome to the Cloud.

What is cloud computing?

• Too many definitions.

• Computing as a service? Virtualized
hosting? Decentralized storage?

• Let’s just talk about cloud hosting.

• It is a total revolution in computing that has
never been seen before.

[The underlying operating system] allows the
operator to divide up the computer into a
set of partitions, each one with a fixed
memory size, isolated from the others…

— OS/360-MFT, circa 1966

Cloud Hosting, 1

• Dividing machines up into virtual machines,
using a “hypervisor” kernel.

• (The term “hypervisor” was coined in
1965, btw.)

• OK, I’ll stop now.

• Providing these virtual machines as
computing resources.

Cloud Hosting, 2

• The hosting provider:

• Manages the mapping of virtual hosts to
physical machines.

• Feeds and waters the actual physical
hardware.

• Provides services, APIs, etc. to provision
and manage these individual virtual hosts.

Amazon Web Services

• Huge raft of interesting services.

• We’re going to focus on just a couple:

• EC2 — The actual hosting service.

• EBS — Their “storage area network.”

Amazon Elastic Compute
Cloud (EC2)
• A very large collection of commodity

servers spread across data centers
worldwide.

• Divided into “instances” (virtual hosts) with
various capacities.

No Magic.

Instance types

• Wide range, with varying amounts of CPU,
memory, and instance storage (i.e., disk
space local to the machine).

• In essence, how much of a physical machine
you get.

• Wide cost range, too.

A gentle reminder…

• You are sharing the instance with other
customers.

• You get the CPU, memory and instance
storage that you’ve requested, but…

• The I/O channel and network are shared
across all customers on that instance.

Exception:
Dedicated Instances
• Dedicates hardware to a particular

customer.

• Still virtualized.

• $7,305 per month per region.

• … plus more expensive instances.

Non-Exception:
Reserved Instances
• Reserved Instances are a pricing program,

not a technical program.

• Reduces costs and guarantees you an
instance if you commit to particular usage
patterns.

• Doesn’t change the tenancy of the servers
at all.

Instances are just
computers.
• You pick your own operating system.

• And debug your own kernel bugs.

• You set up your own infrastructure
(although Amazon has many cool tools).

• You install and operate your own user-level
software.

• Amazon keeps the lights on.

Storage in AWS

Instance Storage

• Otherwise known as ephemeral storage.

• When Amazon calls it ephemeral, believe
them.

• Survives reboots (they say).

• Can disappear in a large range of
circumstances.

• Most you can get is 3.4TB.

Elastic Block Storage, 1

• It’s a SAN over Ethernet.

• Individual volumes from 1GB to 1TB.

• Can be moved from one instance to
another (only one at a time).

• Snapshotting to Amazon S3.

Elastic Block Storage, 2

• EBS server provides resilience against hard
drive failures.

• Can mount any number of EBS volumes on
a single machine.

• Can create RAID sets of multiple EBS
volumes.

Elastic Block Storage, 3

• Runs over the network.

• Each instance has a single 1Gb Ethernet
port…

• … so the theoretical maximum
performance for EBS on an instance is
125MB/second.

• Testing confirms this.

Elastic Block Storage, 4

• Elastic Block Storage is not cheap.

• You pay for both the storage itself, and I/O
operations from and to it.

• This can add up.

Sharing is not always caring.

• You share the instance with other
customers.

• You share the network fabric with lots of
other customers.

• You share the EBS server with lots and lots
of other customers.

• Result… um, not profit.

“The performance
characteristics of
Amazon’s Elastic
Block Store are
moody, technically
opaque and, at times,
downright
confounding.”

— Orion Henry
Co-Founder

Heroku

EBS has good days.

• 80-130 megabytes per second throughput.

• 20ms latency.

• Low variability.

EBS has bad days.

• 2 megabytes per second throughput.

• 2,000ms (yes, 2 second) latency.

• Depends on things utterly outside of your
control.

Instance storage for your
database?
• Not protected against hard drive failures.

• Goes away if the instance shuts down.

• Not really any faster than EBS.

• Amazon specifically says it’s slower.

• Just use it for the boot volume.

Why do we care?

• Databases are all about I/O.

• Limits how fast you can write.

• For very large databases, limits how fast
you can read.

Unpleasant facts of life.

• Instances can reboot at any time, without
warning.

• Hard drive failures can destroy instance
storage.

• EBS volumes… we’ll talk about those later.

• Be prepared for this. It’s part of the price of
admission.

PostgreSQL on Amazon

PostgreSQL on Amazon.

• Configuring your instance.

• Configuring EBS.

• Configuring PostgreSQL.

• Replication.

The Instance.

• Memory is the most important thing.

• If you can fit your whole DB in memory, do
it.

• If you can’t, max out the memory.

Mondo Distro.

• Linux: Ubuntu 11.04 seems the most stable.

• Many problems with both older and
newer versions.

CPU usage.

• CPU is almost never the limiting factor in
instance capacity.

• Always go for more memory over more
CPU.

• CPU exhaustion is usually due to other
processes on the same instance.

• Give them their own instance.

Configuring EBS.

• Really, only one decision about EBS:

• To RAID or not to RAID?

• Folk wisdom that does not work:

• Pre-zeroing the EBS volume.

• RAID10.

Pro-RAID

• Almost all measurements show EBS RAID-0
outperforming single-volume.

• Less so on writes than reads, but still
better.

• 8-stripe RAID-0 appears to be the highest
performance point.

Anti-RAID

• Lose the ability to snapshot volumes.

• Remounting on new instances is tedious.

• EBS RAID has even more variability than
single-volume EBS.

• Increases the chance of losing your data to
an EBS failure.

Wait, what?

• EBS volumes can fail.

• Or fail to mount on instance reboot.

• If one stripe fails, the whole RAID set is
useless.

• Plan for it just like you would plan for an
HD/SSD failure in a private machine.

EBS tips ‘n’ tricks.

• XFS.

• Pretty much anything but ext3, really.

• --setra 65536.

• Chunk size 256k.

• deadline scheduler.

• Or cfq. Or noop.

Configuring PostgreSQL

• Instances are just (virtual) computers.

• Everything you would otherwise do to tune
PostgreSQL, do here.

• Check out Josh Berkus’ “Five Steps to
PostgreSQL Performance” talk.

The basics.

• Only run PostgreSQL on the instance.

• Put all of $PGDATA on an EBS volume
(striped or not).

• Fine to put the operation logs (pg_log) on
instance storage.

pg_xlog

• Put it on the same EBS volume as the rest
of the database.

• This is exactly contrary to normal advice.

• You cannot optimize seeks on EBS. Don’t
bother trying.

• If you lose the EBS volume, your DB is
toast, anyway.

pg_xlog, 2

• Do not put pg_xlog on instance storage!

• Renders the database unrecoverable in
case of an instance failure.

random_page_cost

•random_page_cost = 1.1

• EBS is so virtualized you cannot control the
seek behavior.

• Sequential and random accesses are nearly
identical in performance.

effective_io_concurrency

• If you are doing striped RAID, set to the
number of stripes.

• If you are not, leave it alone.

Replication

• PostgreSQL on AWS means replication.

• Stop looking at me like that. Just do it.

• Too many uncontrollable failure modes to
rely on the data being safe on one instance.

The basic setup.

• Streaming replication from one instance to
another.

• Second instance does not have to be as
capable.

• CPU usage on the second instance will
be low, unless used for queries.

Availability Zones.

• You must put the replica in a different
Availability Zone from the master.

• AWS appears to have customer affinity for
physical machines.

• This is the only way to guarantee that your
master and replica are not on the same
machine.

EBS snapshotting.

• If you are using single-volume EBS, you can
do point-in-time backups using
snapshotting.

• Be sure you are saving the WAL segments
as well as the data volume.

•https://github.com/heroku/WAL-E

https://github.com/heroku/WAL-E
https://github.com/heroku/WAL-E

Disaster recovery.

• Put a warm standby in a different region.

• Allows for point-in-time recovery.

• Keep 2-4 backup snapshots.

• 2-4 backups/week.

Monitor, monitor, monitor.

• Replication implies monitoring.

• Disks can fill up with misconfigured
replication.

• At minimum, monitor replication lag, disk
usage.

• check_postgres.pl

Scaling

Sooner or later…

• You’ll max out your High-Memory
Quadruple Extra Large Instance with its 8-
stripe RAID-0 EBS mount.

• And then what?

• Most scaling issues are application issues;
fix those first.

Scaling basics.

• Pull stuff out of the database that doesn’t
need to be there.

• Web sessions, large objects, etc.

• Move as much read traffic as you can to the
replicas.

• Memory is cheap on AWS; use it for all it’s
worth!

More scaling basics.

• Aim for a shared-nothing application layer.

• Can automatically provision/terminate
app servers as required.

• Digest and cache as much as possible in
memory-based servers.

• Typical HTML fragments, result sets, etc.

The wall.

• Even so, you’ll run out of performance
(probably write capacity) on your primary
database volume.

• Either consistently, or at peak moments.

• Then, it’s time to make some tough
decisions.

Sharding.

• Partition the database across multiple
database servers.

• Isolate what you can, duplicate what you
can’t.

• Great for workloads that are proportional
to a small atom of business process.

Lots of fun challenges.

• Keeping IDs unique.

• Routing work to the right database.

• Distributing shared data to all the
instances.

• Handling database instance failure.

• Doing consolidated queries across all
databases.

Data consolidation.

• Creating reports across all shards can be
challenging.

• Export data to a central data warehouse.

• Do parallel queries with aggregation at the
end.

• PL/Proxy.

Sharding is not for
everyone.
• Two major categories:

• Data warehouses.

• Very high write volume applications.

• Don’t deform your application architecture
just to achieve sharding…

• … but a sharded architecture is great if the
application naturally supports it.

Architecture for Amazon

• Design your architecture for sharding and
distribution.

• Treat each instance as a disposable
resource.

• Make full use of Amazon’s APIs; automate
everything you possibly can.

So, what do I do?

Yes No

Small database (<50GB?)
Not write-critical
Locality of reference
Shardable application

Large database
Write-critical

Global references
Unary application

Web OLTP Data warehouse

Hybrid solutions.

• Develop on AWS, deploy on traditional
hardware.

• Primary web-facing servers on AWS, data
warehouse on traditional hardware.

• Impractical to have the app server and
database in different hosting environments,
though.

Running with scissors.

• Turn off all PostgreSQL safety features.

• Rely on streaming replication to preserve
data.

• Treat each instance and EBS volume as
disposable.

• Hope the numbers work in your favor.

We do not recommend this.

Avoid Amazon
Stockholm Syndrome
• No one cares that you run on Amazon.

• Your business is not defined by where you
host your computation resources.

• If Amazon doesn’t do what you need, move.

• After all, it’s all just about…

Cost

Traditional cost model.

• High buy-in.

• Cost rises in bumps and jumps as more
capacity is required.

• Hard to scale on-demand.

• Economies of scale exist.

AWS cost model.

• Starts at near-zero.

• Increases linearly with capacity.

• Can provision up/down very quickly.

• No economies of scale (discounts are not
economies of scale).

The Most Oversimplified Cost Comparison in the History of Computing.

AWS Traditional

Do not forget…

• … bandwidth is extra.

• … I/O operations are extra.

• These can swamp the actual instance cost.

• Be sure to include them in your cost
estimates.

A note on staffing.

• “Cloud hosting” does not mean “no
operations staff.”

• You can defer this on cloud hosting, but:

• You will need these people eventually.

• Every one of our large AWS clients has
hired people to manage their “data center.”

Paddling up the Amazon.

• AWS is a great solution if your application
matches its technical and pricing model.

• Take full advantage of if it is a good fit.

• Don’t deform your architecture just to
make it work.

• Consider costs and alternatives carefully.

Thanks!

pgexperts.com

thebuild.com

