
© 2ndQuadrant Limited 2009-12

A Batch of Commit Batching

Greg Smith and Peter Geoghegan
2ndQuadrant

© 2ndQuadrant Limited 2009-12

Latency components

 Local commit
– Based on hard drive speed

 Network transfer time
 Remote commit
 Parallel throughput increases don't help

– RAID0
– Split work among multiple clients

© 2ndQuadrant Limited 2009-12

Storage Latency

Type Latency (ms) Transactions /
Second

7200 RPM 8.3 120

10K RPM 6.0 167

15K RPM 4.0 250

SATA SSD 0.22 4500

Battery-backed
Write Cache

0.2 5000

Flash Card 0.1 10000

© 2ndQuadrant Limited 2009-12

Latency impact on throughput

© 2ndQuadrant Limited 2009-12

Synchronous Performance

 Full duplex communication
 Reply messages have only write location

– 64 bytes
 Limited by network plus WAL write time
 Internet is approximately ½ speed of light

© 2ndQuadrant Limited 2009-12

Light is pretty fast, right?

© 2ndQuadrant Limited 2009-12

Observed latency

• >10ms common even for close local areas
• 80ms to cross the US or Atlantic Ocean
• 150ms to cross the Pacific

© 2ndQuadrant Limited 2009-12

Network Latency

Type Latency (ms) Transactions /
Second

1Gbps 0.07 14286

100Mbps 0.3 333

Baltimore -> New
York City

15 67

Baltimore -> San
Francisco

83 12

Baltimore ->
Netherlands

100 10

© 2ndQuadrant Limited 2009-12

Commit Batching

 Wrap multiple statements into one transaction
– BEGIN
– INSERT …
– INSERT …
– COMMIT

 One durable write (write plus flush) per transaction commit

 Multiple statements can be grouped into each physical commit

 Similarly, multiple clients worth of commits can be grouped into less
physical commits

 Vital to high latency sync rep case

© 2ndQuadrant Limited 2009-12

Synchronous Replication

 Zero Data Loss replication
 Efficient – thousands of TPS in tests
 One active synchronous standby
 Transaction controlled

© 2ndQuadrant Limited 2009-12

WAL Latency + Sync Rep Test

 Master in Baltimore
 BBWC to limit its overhead

 Standby at Casa 400, Amsterdam
 Commit rate measured with INSERT statements
 Measured ping time >=100ms
 Typical sync commit time >=112ms
 Theoretical single client max = 10 TPS
 Measured single client rate = 7 to 8 TPS
 How does it scale?

© 2ndQuadrant Limited 2009-12

Sync rep group commit, 112ms

© 2ndQuadrant Limited 2009-12

Local group commit in 9.1

 Sync group commit is almost linear with client
count

 Hundreds of commits in each commit disk flush
 Local commit rates should do the same
 ...but they didn't. Why?

© 2ndQuadrant Limited 2009-12

9.1 INSERT scaling, 8ms

© 2ndQuadrant Limited 2009-12

Commit Delay in 8.3

© 2ndQuadrant Limited 2009-12

Counter Tuned INSERT scaling

© 2ndQuadrant Limited 2009-12

Existing local group commit

 Write-ahead Log disk flush (fsync) allows commit batching

– XLogFlush checks if others have pushed forward the known flushed point of
LogwrtResult.Flush (a XLogRecPtr) with a “fast path” check

 Only 1 client can flush data to disk at any time; only one person can call
XLogWrite.

– Synchronized with WALWriteLock
– XLogWrite function updates shared memory

– Exclusive lock means only one client can hold it at a time

– Measured as a heavy bottleneck

 Optimal behavior for high concurrency has few physical commits
– 100 clients? Odds of commit are 1%

 Start by refactoring the sync rep code for local commits

© 2ndQuadrant Limited 2009-12

Improved 9.2 group commit

 Assume most clients will fail to commit
 Try to obtain a Lightweight Lock (LWLock)

 Clients wait to become the commit leader

– Only the leaders ever get the lock

– Most clients never acquire the WAL write lock
– They only wait for its release, then see the leader took care of them

 Efficient loop trying to become the new leader

– Assume the current leader will do the work

– Most time is spent sleeping, not actually acquiring the lock

 Optimized locking wait

– No delay for 1 or 2 client cases

– Hundreds of database commits per physical commit possible

© 2ndQuadrant Limited 2009-12

9.2 INSERT scaling

© 2ndQuadrant Limited 2009-12

9.2 INSERT scaling

© 2ndQuadrant Limited 2009-12

User Selectable Durability

 Set via synchronous_commit
 Two existing modes control master fsync
 Three new modes control sync rep
 World-first from PostgreSQL and 2ndQuadrant

− Users can control the durability of each transaction
− All durability levels can co-exist in one application

© 2ndQuadrant Limited 2009-12

Five durability levels

Sync
Standby?

Sync
Commit?

Master
fsync Send Standby

fsync Reply

off off off off off off

off on on off off off

on off off off off off

on local on off off on

on on on on on on

© 2ndQuadrant Limited 2009-12

Futures

• Remove commit_delay

• Improve scheduling of commit flush fsync calls

© 2ndQuadrant Limited 2009-12

Conclusions

• Battery-backed cache vital for local systems

• WAN overhead dominated by light speed

• Group commit really helps with multiple clients

– 9.2? Big improvement in sync rep and local cases

• Need to only flush what's necessary

• Applications need to be aware of durability

© 2ndQuadrant Limited 2009-12

Questions?

© 2ndQuadrant Limited 2009-12

PostgreSQL Books

http://www.2ndQuadrant.com/books/

© 2ndQuadrant Limited 2009-12

2ndQuadrant Training

 Available now in US, UK, Italy, Germany
 Includes hands-on workshops with instructor

interaction
 Database administration
 Performance
 Replication and Recovery
 Real-world experience from production DBAs

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

