Empowered by Innovation N E‘

Row Level Security

NEC Europe, Itd
SAP Global Competence Center
KaiGai Kohei <kohei.kaigai@emea.nec.com>

Row Level Security being targeted towards v9.4

* PGCon2013: Row Level Sec X

€ — C [www.pgoon.org/2013/schedule/track/9.3%20Features/571.en.html

PGCon 2013
The PosigreSQL Conference

2013 .
Row Level Security

Row-level security has a feature with
longstanding development. It can enforce users
to reference or modify part of rows according to
the configured security policy. So, we can
utilize this feature as if virtual private database
on other commercial database, however, we
designed this feature much carefully to keep

both of reliable security and minimum

performance trade-off. In addition, we enhanced usability to allow
row-level security policy using usual expressions, also plan to
integration with label based mandatory access control.

This session introduces which was the problematic scenario being called
"leaky-view", solutions for them as basis of this feature, row-level security
feature being newly supported, and the future plan towards integration with
label based mandatory access control.

We don't assume audience has deep knowledge on planner. Typical use
cases will be helpful for web-application developers who like to ensure
reliable separation between users.

PGCon2013 - update 130508

SPEAKERS

2

SCHEDULE

FEEDBACK

Did you attend this event?
Give Feedback

L]

ROW LEVEL SECURITY - PostgreSQL Conference 2013

Empowered by Innovation N E‘

Agenda

§ Our motivation

| Background Story
® Leaky-view Problem
® Security Barrier
® Leakproof Function

| Row Level Security

il

il

ROW LEVEL SECURITY - PostgreSQL Conference 2013

Empowered by Innovation N E‘

How RLS should work (1/2)

label id name price

% ‘unclassified’ 10 ‘water’ 100 N
- ‘classified’ 20 ‘coke’ 120 2
T ‘unclassified’ 30 Yjuice’ 180 ¥

‘classified’ 40 ‘sprite’ 120

N ‘secret’ 50 ‘beer’ 240

‘secret’ 60 ‘sake’ 350

table: drink

|I|"|||-II||..,‘

ROW LEVEL SECURITY - PostgreSQL Conference 2013 Empowered by Innovation N E‘

| |
~

How RLS should work (2/2)

SELECT * FROM drink NATURAL JOIN drink_order

shop_id | quantum

10 ‘water’ 100 100 8 2013-02-16
shop_id = 100 |30 juice' 180 100 10 2013-02-18 |
| —— |
id name price @%
10 ‘water’ 100
20 ‘coke’ 120 mmmm
30 Cjuice' 180 2013-02-16
40 sprite’ 120 20 200 5 2013-02-17
| e | o 10 200 6 2013-02-18
60 - 350 30 100 10 2013-02-18
table: drink table: drink_order

|I|"|||-II||..,‘

ROW LEVEL SECURITY - PostgreSQL Conference 2013 Empowered by Innovation N E‘

| |
ol

Motivation (1/2) — Responsibility of access control

Query
Executor

PostgreSQL

+WHERE

(@

Applications

«
«

-

| A case when a shared table is accessed by multiple users
| Not easy to ensure applications are bug/vulnerability free

| Move the responsibility of correct access control

from Application to RDBMS =» contralization & consistency

=06 ROW LEVEL SECURITY - PostgreSQL Conference 2013

Empowered by Innovation N E‘

Motivation (1/2) — Responsibility of access control

’ R £
Applications €< g
Query
Executor N3
Query
i Applications €~

PostgreSQL @ Applications [€~

| A case when a shared table is accessed by multiple users
| Not easy to ensure applications are bug/vulnerability free

| Move the responsibility of correct access control
from Application to RDBMS =» centralization & consistency

E—a ROW LEVEL SECURITY - PostgreSQL Conference 2013 Empowered by Innovation N E‘

Motivation (2/2) — Integration with SELinux

(\
Applications |[€—_ %
Query 3)
@ Executor N3 £
Query 3
Applications &< %
. E =
\\ 2]
N\ ©
hN @ lications |[€— g g
Applica
L PostgreSQL ‘A u

S
‘ Linux with SELinux enabled

——
I_

| Per user privileges of application instance on its start-up time
| Access control decision based on a centralized security policy
| Integration of access control between OS and DBMS

ROW LEVEL SECURITY - PostgreSQL Conference 2013 Empowered by Innovation N E‘

“

Is

WHERE-clause a simple solution?

il

postgres=> CREATE VIEW soft drink AS A
SELECT * FROM drink WHERE price < 200;
CREATE VIEW
postgres=> GRANT SELECT ON soft drink TO public;
GRANT
postgres=> SET SESSION AUTHORIZATION bob;
SET
postgres=> SELECT * FROM soft drink;
id | name | price
e b
10 | water | 100
20 | coke | 120
30 | juice | 180
40 | sprite | 120
(4 rows)
postgres=> SELECT * FROM drink;
ERROR: permission denied for relation drink
_ J
iii %: ROW LEVEL SECURITY - PostgreSQL Conference 2013

Empowered by Innovation N E‘

Nightmare of Leaky View (1/3)

rpostgres=> SELECT * FROM soft drink WHERE f leak (name); B
NOTICE: f leak => water
NOTICE: f leak => coke
NOTICE: f leak => juice
NOTICE: f leak => sprite
NOTICE: f leak => beer
NOTICE: f leak => sake
id | name | price
_____|_ ________ _|_ _______
10 | water | 100
20 | coke | 120
30 | jJuice | 180
40 | sprite | 120
(4 rows
U J

ROW LEVEL SECURITY - PostgreSQL Conference 2013

Empowered by Innovation N E‘

Nightmare of Leaky View (2/3)

$S
BEGIN

END

Filter:
(2 rows)

_

(éostgres=> CREATE OR REPLACE FUNCTION f leak
RETURNS bool COST 0.000001 AS

RATSE NOTICE 'f_leak => &', $1;
RETURN true;

$S LANGUAGE plpgsqgl;
CREATE FUNCTION

postgres=> EXPLAIN (costs off)
SELECT * FROM soft drink WHERE f leak (name);

QUERY PLAN

Seq Scan on drink

(f leak (name) AND (price < 200))

N

(text)

‘<" is more expensive than f_leak()

J

i

L '[|I|”|

fl

l

ROW LEVEL SECURITY - PostgreSQL Conference 2013

Empowered by Innovation N E‘

Nightmare of Leaky View (3/3)

(éostgres=> CREATE VIEW v _both AS
SELECT * FROM t left JOIN t_right ON a = x
WHERE b like '$Sabc%';

CREATE VIEW

postgres=> EXPLAIN (COSTS OFF)
SELECT * FROM V_both WHERE f_leak(y);
QUERY PLAN
Hash Join
Hash Cond: (t left.x = t right.a)

-> Seq Scan on t left
Filter: £ leak(y) f_leak() takes arguments

= Eealh ~~— come from t_left only

-> Seqg Scan on t right
Filter: (b ~~ '$Sabc%'::text)

(7 rows)

_ J

il

ROW LEVEL SECURITY - PostgreSQL Conference 2013 Empowered by Innovation N E‘

7

Problem to be tackled

7

SELECT * FROM v both WHERE f leak(y);
2

SELECT * FROM (
SELECT * FROM t left JOIN t right ON a = x
WHERE b like '%hoge%’
) AS v _both WHERE f leak(y)

\

| Symptom
® Query optimization reorders the sequence of
| Solution

® If purpose of the view is security, qualifiers should not be moved
across the sub-query border.

.I|.|-|

M

ROW LEVEL SECURITY - PostgreSQL Conference 2013 Empowered by Innovation N E‘

Security Barrier (1/2)

postgres=> CREATE OR REPLACE VIEW soft drink A
WITH (security barrier)
AS SELECT * FROM drink WHERE price < 200;
CREATE VIEW
postgres=> SET SESSION AUTHORIZATION bob;
SET
postgres=> SELECT * FROM soft drink WHERE f leak (name);
NOTICE: f leak => water
NOTICE: f leak => coke
NOTICE: f leak => juice
NOTICE: f leak => sprite
id | name | price
I b
10 | water | 100
20 | coke | 120
30 | jJuice | 180
40 | sprite | 120
(4 rows)
_ J

ROW LEVEL SECURITY - PostgreSQL Conference 2013 Empowered by Innovation N E‘

Security Barrier (2/2)

,
postgres=> EXPLAIN (costs off)

SELECT * FROM soft drink WHERE f leak (name);
QUERY PLAN
Subquery Scan on soft drink
Filter: f leak(soft drink.name)
-> Seq Scan on drink
Filter: (price < 200)
(4 rows)

.

J CREATE VIEW ... WITH (security_barrier) AS ...

® Prevention of user given qualifier into views
with security_barrier attribute

® Advantage: qualifiers shall be evaluated according to user’s intention
® Disadvantage: may not optimized query execution plan, instead

M

fl

ROW LEVEL SECURITY - PostgreSQL Conference 2013 Empowered by Innovation N E‘

Trade-off between performance and security

4)
postgres=> CREATE VIEW my team WITH (security barrier)

AS SELECT * FROM employee WHERE boss = current user;
CREATE VIEW
postgres=> EXPLAIN (costs off)

SELECT * FROM my team WHERE id = 100;
QUERY PLAN
Subquery Scan on my team
Filter: (my team.id = 100)
-> Seqg Scan on employee
Filter: (boss = "current user"())

(4 rows)
_ _J

® Query should be index-scannable using id=100

® Due to security_barrier attribute, sequential scan on “employee”
first, then evaluation of “id=100"

|I||||1II||...,,‘
(l

ROW LEVEL SECURITY - PostgreSQL Conference 2013 Empowered by Innovation N E‘

1||||
(o)}

Leakproof Function (1/2)

| Leakproof attribute
® It shows the marked function is definitely safe.
® Thus, no side effects if it would be pushed down.

(postgres=# CREATE FUNCTION nabeatsu(integer) h
RETURNS bool LEAKPROOF AS
$9
BEGIN
IF (S1 % 3 = 0) THEN RETURN true; END IF;
WHILE $1 > 0 LOOP
IF (S1 % 10 = 3) THEN RETURN true; END IF;
$1 = S1 / 10;
END LOOP;
RETURN false;
END
$S LANGUAGE plpgsqgl;
CREATE FUNCTION
U J
EE __=El7 ROW LEVEL SECURITY - PostgreSQL Conference 2013 Empowered by Innovation N Ec

Leakproof Function (2/2)

f N

postgres=> EXPLAIN (costs off)
SELECT * FROM my team WHERE nabeatsu(id);
QUERY PLAN
Seq Scan on employee

Filter: ((boss = "current user" ()) AND nabeatsu(id))
(2 rows)

| Some functions are LEAKPROOF in the default
® Example) Equivalent operator between integers

é N
postgres=> EXPLAIN (costs off)
SELECT * FROM my team WHERE id = 300;
QUERY PLAN

Index Scan using employee pkey on employee
Index Cond: (1d = 300)
Filter: (boss = "current user"())

| (3 rows)

.

.-I|.|n |

M

ROW LEVEL SECURITY - PostgreSQL Conference 2013 Empowered by Innovation N E‘

In case of Oracle

A)
Id	Operation	Name	Rows	Bytes
0O	SELECT STATEMENT		3	81
* 1	VIEW	V	3	81
2	HASH JOIN		3	120
3 TABLE ACCESS FULL	B	3 o0		
4	TABLE ACCESS FULL	A	4	80

Predicate Information (identified by operation id) :

1 - filter("F LEAK" ("X")=1) <== This 1s correct,
2 — access ("A"."ID"="B"."ID") but performance loss!
3 - filter ("B"."Y"<>'bbb')

_ J

.-I|.|n‘|

i

ROW LEVEL SECURITY - PostgreSQL Conference 2013 Empowered by Innovation N E‘

Towards v9.4 development cycle

| Features in v9.2
® security_barrier attribute of VIEW
® |eakproof attribute of FUNCION
| Features in v9.3
® Row-level security discussion was time-over! (;_;)
| Features in v9.4
® ALTER TABLE ... SET ROW SECURITY (...) statement
® Writer side checks
® Label based mandatory row-level access control

I“"Illlu....,‘

(i
(@)

ROW LEVEL SECURITY - PostgreSQL Conference 2013

I

Empowered by Innovation N E‘

Syntax of Row-level Security (1/2)

ALTER <table name>
SET ROW SECURITY FOR <cmd>
TO (<expression>) ;
<cmd> := ALL | SELECT | INSERT | UPDATE | DELETE

| <expression> (performing as a security policy) shall be appended
on the query specified by <cmd>

| It is guaranteed that security policy is evaluated earlier than user
given qualifiers.

7

postgres=> ALTER TABLE my table
SET ROW SECURITY FOR ALL TO (a %$ 2 = 0);
ALTER TABLE
postgres=> ALTER TABLE my table
SET ROW SECURITY FOR ALL TO
(a = ANY (SELECT x FROM sub tbl));

ALTER TABLE

y

M

fl

ROW LEVEL SECURITY - PostgreSQL Conference 2013 Empowered by Innovation N E‘

Syntax of Row-level Security (2/2)

ATLTER t SET ROW SECURITY FOR ALL
TO (owner = current user);

SELECT * FROM |t |WHERE f leak(x);

¢ j
SELECT * FROM | (

SELECT * FROM t WHERE owner = current user
) t |WHERE f leak (x)

Sub-Query
with
security_barrier

® Replacement of table reference by a simple table scan with security
barrier attribute and qualifiers of security policy

® Database superuser is an exception

i

L '[|I|”|

i

ROW LEVEL SECURITY - PostgreSQL Conference 2013 Empowered by Innovation N E‘

l

How does RLS work? (1/2)

postgres=> ALTER TABLE t
SET ROW SECURITY FOR ALL TO (owner = current_user);
ALTER TABLE

postgres=> EXPLAIN (costs off)
SELECT * FROM t WHERE f leak(b) AND a > 0;
QUERY PLAN
Subquery Scan on t
Filter: £ leak(t.Db)
-> Index Scan using my table pkey on t t 1
Index Cond: (owner = "current user"())
Filter: (a > 0)
(5 rows)

7
\

.-I|.|n‘|

fl

ROW LEVEL SECURITY - PostgreSQL Conference 2013 Empowered by Innovation N E‘

How does RLS work? (2/2)

7

\

postgres=> EXPLAIN (costs off)
UPDATE t SET b = b WHERE f leak(b);
QUERY PLAN
Update on t
-> Subquery Scan on t 1

Filter: £ leak(t 1.Db)
-> Index Scan using my table pkey on t t 2
Index Cond: (owner = '"current user"())

7

postgres=> EXPLAIN (costs off)
DELETE FROM t WHERE f leak(b);
QUERY PLAN

Delete on t
-> Subquery Scan on t 1
Filter: £ leak(t 1.Db)
-> Index Scan using my table pkey on t t 2
Index Cond: (owner = "current user"())

7

J

.-I|.|n‘|

fl

~

ROW LEVEL SECURITY - PostgreSQL Conference 2013 Empowered by Innovation N E‘

Table Update and RLS (1/2)

Evaluation of <
WHERE clause B

ctid [+| x y Z

AN
Calculation of PN
Target-List
(N
N £
g) ctid X y -
! d 7 (0,1)
X y Z
(0/2) \\
i ©3) o) ~ | ‘
ctid —3 (0,4) |
0,5 [~~~ "TTTTTTTTUTTTTTTTTTTTTTTTTTTTTTTTTTTTT
ModifyTable | { TableScan)

.I|.|-|

M

ROW LEVEL SECURITY - PostgreSQL Conference 2013 Empowered by Innovation N E‘

Table Update and RLS (2/2)

~
Evaluation of | Evaluation of WHERE
WHERE clause > clause (security policy)
S 7 - i
{ Calculation of },.-p.\ ctid |[+| x z
Target-List { %) PN .
g N 7 N S==7 u
ctid X V' z
Xl yl Zl (OI 1)
©02) | ——0V|
+ ©3) |oooooo oo | _______________|
ctid 0,4 | :
R e e
i ModifyTable) TableScan)
SubQueryScan)
;é% 6 ROW LEVEL SECURITY - PostgreSOL Conference 2013 FmEowesed by lviavesion NEC

(l

Further development (1/2)

| Security Policy per SQL commands Security Policy
] Add checks just before INSERT/UPDATE per SQL commands
ya
e 4 ~
Evaluation of 1 Evaluation of WHERE
WHERE clause >\ clause (security policy)
Calculation of e ctid|+| x |y | z
Target-List / 3 A PN
checks based hd ” » _ »
Oon newer version ol | (0, 1)
of tuples y (0,2)
+ 3 Joo .~ L ‘
ctid > @4 4y | | !
(0, 5)
ModifyTable L TableScan)
SubQueryScan)
EE=E__-_=—=27 ROW LEVEL SECURITY - PostgreSQL Conference 2013 FIIROWETE By Iioation NEC

Futher development (2/2)

| Labal-based Row-level Security

® access control functions according to SELinux policy
| Step to implementation

® all the features of “standard” row-level security

® security-label assignment on user’s table

® enumerate type that can add items at run-time

® enhancement of contrib/sepgsql

(i
(o'e]

ROW LEVEL SECURITY - PostgreSQL Conference 2013

I“"Illlu....,‘
I

Empowered by Innovation N E‘

il

tﬂﬂ

”1”

|

Resources

| CommitFest: 15t to v9.4

® https://commitfest.postgresgl.org/action/commitfest view?id=18
| Git repository

® https://github.com/kaigai/sepgsal/tree/rowsec
| Wikipage

® http://wiki.postgresal.org/wiki/RLS

ROW LEVEL SECURITY - PostgreSQL Conference 2013

Empowered by Innovation N E‘

https://commitfest.postgresql.org/action/commitfest_view?id=18
https://github.com/kaigai/sepgsql/tree/rowsec
http://wiki.postgresql.org/wiki/RLS

owered by Innovation N E‘

Any Questions?

Empowered by Innovation

NEC

