
Row Level Security

NEC Europe, ltd

SAP Global Competence Center

KaiGai Kohei <kohei.kaigai@emea.nec.com>

Row Level Security being targeted towards v9.4

2 ROW LEVEL SECURITY - PostgreSQL Conference 2013

Agenda

▌Our motivation

▌Background Story

 Leaky-view Problem

 Security Barrier

 Leakproof Function

▌Row Level Security

3 ROW LEVEL SECURITY - PostgreSQL Conference 2013

table: drink

How RLS should work (1/2)

4 ROW LEVEL SECURITY - PostgreSQL Conference 2013

label id name price

‘unclassified’ 10 ‘water’ 100

‘classified’ 20 ‘coke’ 120

‘unclassified’ 30 ‘juice’ 180

‘classified’ 40 ‘sprite’ 120

‘secret’ 50 ‘beer’ 240

‘secret’ 60 ‘sake’ 350

Security Policy
LabelU  LabelT

4
 r

o
w

s 2
 ro

w
s

SELECT * FROM drink;

‘unclassified’ ‘classified’

table: drink_order table: drink

How RLS should work (2/2)

5 ROW LEVEL SECURITY - PostgreSQL Conference 2013

id name price

10 ‘water’ 100

20 ‘coke’ 120

30 ‘juice’ 180

40 ‘sprite’ 120

50 ‘beer’ 240

60 ‘sake’ 350

id shop_id quantum date

10 100 8 2013-02-16

20 200 5 2013-02-17

10 200 6 2013-02-18

30 100 10 2013-02-18

Security Policy
shop_idU = shop_idT

SELECT * FROM drink NATURAL JOIN drink_order

shop_id = 100

id name price shop_id quantum data

10 ‘water’ 100 100 8 2013-02-16

30 ‘juice’ 180 100 10 2013-02-18

Motivation (1/2) – Responsibility of access control

▌A case when a shared table is accessed by multiple users

▌Not easy to ensure applications are bug/vulnerability free

▌Move the responsibility of correct access control
from Application to RDBMS  contralization & consistency

6 ROW LEVEL SECURITY - PostgreSQL Conference 2013

PostgreSQL

Applications

Applications

Applications

Query

Executor

Query

+WHERE

Query

+WHERE

Query

+WHERE

Motivation (1/2) – Responsibility of access control

▌A case when a shared table is accessed by multiple users

▌Not easy to ensure applications are bug/vulnerability free

▌Move the responsibility of correct access control
from Application to RDBMS  centralization & consistency

7 ROW LEVEL SECURITY - PostgreSQL Conference 2013

PostgreSQL

Applications

Applications

Applications

Query

Executor

Query
+WHERE

Query

+WHERE

Query

+WHERE

Motivation (2/2) – Integration with SELinux

▌Per user privileges of application instance on its start-up time

▌Access control decision based on a centralized security policy

▌Integration of access control between OS and DBMS

8 ROW LEVEL SECURITY - PostgreSQL Conference 2013

PostgreSQL

Applications

Applications

Applications

Query

Executor

Query

Query

WHERE

Query

Linux with SELinux enabled

m
o
d
_
se

lin
u
x
.s

o
 m

o
d
u
le

Is WHERE-clause a simple solution?

9 ROW LEVEL SECURITY - PostgreSQL Conference 2013

postgres=> CREATE VIEW soft_drink AS

 SELECT * FROM drink WHERE price < 200;

CREATE VIEW

postgres=> GRANT SELECT ON soft_drink TO public;

GRANT

postgres=> SET SESSION AUTHORIZATION bob;

SET

postgres=> SELECT * FROM soft_drink;

 id | name | price

----+--------+-------

 10 | water | 100

 20 | coke | 120

 30 | juice | 180

 40 | sprite | 120

(4 rows)

postgres=> SELECT * FROM drink;

ERROR: permission denied for relation drink

Nightmare of Leaky View (1/3)

10 ROW LEVEL SECURITY - PostgreSQL Conference 2013

postgres=> SELECT * FROM soft_drink WHERE f_leak(name);

NOTICE: f_leak => water

NOTICE: f_leak => coke

NOTICE: f_leak => juice

NOTICE: f_leak => sprite

NOTICE: f_leak => beer

NOTICE: f_leak => sake

 id | name | price

----+--------+-------

 10 | water | 100

 20 | coke | 120

 30 | juice | 180

 40 | sprite | 120

(4 rows)

Nightmare of Leaky View (2/3)

11 ROW LEVEL SECURITY - PostgreSQL Conference 2013

postgres=> CREATE OR REPLACE FUNCTION f_leak (text)

 RETURNS bool COST 0.000001 AS

 $$

 BEGIN

 RAISE NOTICE 'f_leak => %', $1;

 RETURN true;

 END

 $$ LANGUAGE plpgsql;

CREATE FUNCTION

postgres=> EXPLAIN(costs off)

 SELECT * FROM soft_drink WHERE f_leak(name);

 QUERY PLAN

--

 Seq Scan on drink

 Filter: (f_leak(name) AND (price < 200))

(2 rows)

‘<’ is more expensive than f_leak()

Nightmare of Leaky View (3/3)

12 ROW LEVEL SECURITY - PostgreSQL Conference 2013

postgres=> CREATE VIEW v_both AS

 SELECT * FROM t_left JOIN t_right ON a = x

 WHERE b like '%abc%';

CREATE VIEW

postgres=> EXPLAIN (COSTS OFF)

 SELECT * FROM v_both WHERE f_leak(y);

 QUERY PLAN

 Hash Join

 Hash Cond: (t_left.x = t_right.a)

 -> Seq Scan on t_left

 Filter: f_leak(y)

 -> Hash

 -> Seq Scan on t_right

 Filter: (b ~~ '%abc%'::text)

(7 rows)

f_leak() takes arguments
come from t_left only

Problem to be tackled

▌Symptom

 Query optimization reorders the sequence of

▌Solution

 If purpose of the view is security, qualifiers should not be moved
across the sub-query border.

13 ROW LEVEL SECURITY - PostgreSQL Conference 2013

SELECT * FROM v_both WHERE f_leak(y);

 

SELECT * FROM (

 SELECT * FROM t_left JOIN t_right ON a = x

 WHERE b like '%hoge%’

) AS v_both WHERE f_leak(y)

Security Barrier (1/2)

14 ROW LEVEL SECURITY - PostgreSQL Conference 2013

postgres=> CREATE OR REPLACE VIEW soft_drink

 WITH (security_barrier)

 AS SELECT * FROM drink WHERE price < 200;

CREATE VIEW

postgres=> SET SESSION AUTHORIZATION bob;

SET

postgres=> SELECT * FROM soft_drink WHERE f_leak(name);

NOTICE: f_leak => water

NOTICE: f_leak => coke

NOTICE: f_leak => juice

NOTICE: f_leak => sprite

 id | name | price

----+--------+-------

 10 | water | 100

 20 | coke | 120

 30 | juice | 180

 40 | sprite | 120

(4 rows)

Security Barrier (2/2)

▌CREATE VIEW ... WITH (security_barrier) AS ...

 Prevention of user given qualifier into views
with security_barrier attribute

 Advantage: qualifiers shall be evaluated according to user’s intention

 Disadvantage: may not optimized query execution plan, instead

15 ROW LEVEL SECURITY - PostgreSQL Conference 2013

postgres=> EXPLAIN (costs off)

 SELECT * FROM soft_drink WHERE f_leak(name);

 QUERY PLAN

 Subquery Scan on soft_drink

 Filter: f_leak(soft_drink.name)

 -> Seq Scan on drink

 Filter: (price < 200)

(4 rows)

Trade-off between performance and security

 Query should be index-scannable using id=100

 Due to security_barrier attribute, sequential scan on “employee”
first, then evaluation of “id=100”

16 ROW LEVEL SECURITY - PostgreSQL Conference 2013

postgres=> CREATE VIEW my_team WITH (security_barrier)

 AS SELECT * FROM employee WHERE boss = current_user;

CREATE VIEW

postgres=> EXPLAIN (costs off)

 SELECT * FROM my_team WHERE id = 100;

 QUERY PLAN

 Subquery Scan on my_team

 Filter: (my_team.id = 100)

 -> Seq Scan on employee

 Filter: (boss = "current_user"())

(4 rows)

Leakproof Function (1/2)

17 ROW LEVEL SECURITY - PostgreSQL Conference 2013

postgres=# CREATE FUNCTION nabeatsu(integer)

 RETURNS bool LEAKPROOF AS

$$

BEGIN

 IF ($1 % 3 = 0) THEN RETURN true; END IF;

 WHILE $1 > 0 LOOP

 IF ($1 % 10 = 3) THEN RETURN true; END IF;

 $1 = $1 / 10;

 END LOOP;

RETURN false;

END

$$ LANGUAGE plpgsql;

CREATE FUNCTION

▌Leakproof attribute

 It shows the marked function is definitely safe.

 Thus, no side effects if it would be pushed down.

Leakproof Function (2/2)

▌Some functions are LEAKPROOF in the default

 Example) Equivalent operator between integers

18 ROW LEVEL SECURITY - PostgreSQL Conference 2013

postgres=> EXPLAIN (costs off)

 SELECT * FROM my_team WHERE nabeatsu(id);

 QUERY PLAN

--

 Seq Scan on employee

 Filter: ((boss = "current_user"()) AND nabeatsu(id))

(2 rows)

postgres=> EXPLAIN (costs off)

 SELECT * FROM my_team WHERE id = 300;

 QUERY PLAN

--

 Index Scan using employee_pkey on employee

 Index Cond: (id = 300)

 Filter: (boss = "current_user"())

(3 rows)

In case of Oracle

19 ROW LEVEL SECURITY - PostgreSQL Conference 2013

--

| Id | Operation | Name | Rows | Bytes |

--

| 0 | SELECT STATEMENT | | 3 | 81 |

|* 1 | VIEW | V | 3 | 81 |

|* 2 | HASH JOIN | | 3 | 120 |

|* 3 | TABLE ACCESS FULL| B | 3 | 60 |

| 4 | TABLE ACCESS FULL| A | 4 | 80 |

--

Predicate Information (identified by operation id):

 1 - filter("F_LEAK"("X")=1) <== This is correct,

 2 - access("A"."ID"="B"."ID") but performance loss!

 3 - filter("B"."Y"<>'bbb')

Towards v9.4 development cycle

▌Features in v9.2

 security_barrier attribute of VIEW

 leakproof attribute of FUNCION

▌Features in v9.3

 Row-level security discussion was time-over! (;_;)

▌Features in v9.4

 ALTER TABLE ... SET ROW SECURITY (...) statement

 Writer side checks

 Label based mandatory row-level access control

20 ROW LEVEL SECURITY - PostgreSQL Conference 2013

Syntax of Row-level Security (1/2)

▌<expression> (performing as a security policy) shall be appended
on the query specified by <cmd>

▌It is guaranteed that security policy is evaluated earlier than user
given qualifiers.

21 ROW LEVEL SECURITY - PostgreSQL Conference 2013

ALTER <table_name>

 SET ROW SECURITY FOR <cmd>

 TO (<expression>);

<cmd> := ALL | SELECT | INSERT | UPDATE | DELETE

postgres=> ALTER TABLE my_table

 SET ROW SECURITY FOR ALL TO (a % 2 = 0);

ALTER TABLE

postgres=> ALTER TABLE my_table

 SET ROW SECURITY FOR ALL TO

 (a = ANY(SELECT x FROM sub_tbl));

ALTER TABLE

Syntax of Row-level Security (2/2)

 Replacement of table reference by a simple table scan with security
barrier attribute and qualifiers of security policy

 Database superuser is an exception

22 ROW LEVEL SECURITY - PostgreSQL Conference 2013

ALTER t SET ROW SECURITY FOR ALL

 TO (owner = current_user);

SELECT * FROM t WHERE f_leak(x);

 

SELECT * FROM (

 SELECT * FROM t WHERE owner = current_user

) t WHERE f_leak(x)

Sub-Query
with

security_barrier

How does RLS work? (1/2)

23 ROW LEVEL SECURITY - PostgreSQL Conference 2013

postgres=> ALTER TABLE t

 SET ROW SECURITY FOR ALL TO (owner = current_user);

ALTER TABLE

postgres=> EXPLAIN (costs off)

 SELECT * FROM t WHERE f_leak(b) AND a > 0;

 QUERY PLAN

--

 Subquery Scan on t

 Filter: f_leak(t.b)

 -> Index Scan using my_table_pkey on t t_1

 Index Cond: (owner = "current_user"())

 Filter: (a > 0)

(5 rows)

How does RLS work? (2/2)

24 ROW LEVEL SECURITY - PostgreSQL Conference 2013

postgres=> EXPLAIN (costs off)

 UPDATE t SET b = b WHERE f_leak(b);

 QUERY PLAN

--

 Update on t

 -> Subquery Scan on t_1

 Filter: f_leak(t_1.b)

 -> Index Scan using my_table_pkey on t t_2

 Index Cond: (owner = "current_user"())

postgres=> EXPLAIN(costs off)

 DELETE FROM t WHERE f_leak(b);

 QUERY PLAN

--

 Delete on t

 -> Subquery Scan on t_1

 Filter: f_leak(t_1.b)

 -> Index Scan using my_table_pkey on t t_2

 Index Cond: (owner = "current_user"())

TableScan

Table Update and RLS (1/2)

25 ROW LEVEL SECURITY - PostgreSQL Conference 2013

ctid x y z

(0, 1)

(0, 2)

(0, 3)

(0, 4)

(0, 5)

Evaluation of
WHERE clause

ModifyTable

ctid

x’ y’ z’

+

ctid x y z +

Calculation of
Target-List

SubQueryScan

TableScan

Table Update and RLS (2/2)

26 ROW LEVEL SECURITY - PostgreSQL Conference 2013

ctid x y z

(0, 1)

(0, 2)

(0, 3)

(0, 4)

(0, 5)

Evaluation of
WHERE clause

ModifyTable

ctid

x’ y’ z’

+

ctid x y z +

Evaluation of WHERE
clause (security policy)

ct
id

x

y

z
+

Calculation of
Target-List

Further development (1/2)

▌Security Policy per SQL commands

▌Add checks just before INSERT/UPDATE

27 ROW LEVEL SECURITY - PostgreSQL Conference 2013

checks based
on newer version

of tuples

Security Policy
per SQL commands

Futher development (2/2)

▌Labal-based Row-level Security

 access control functions according to SELinux policy

▌Step to implementation

 all the features of “standard” row-level security

 security-label assignment on user’s table

 enumerate type that can add items at run-time

 enhancement of contrib/sepgsql

28 ROW LEVEL SECURITY - PostgreSQL Conference 2013

Resources

▌CommitFest:1st to v9.4

 https://commitfest.postgresql.org/action/commitfest_view?id=18

▌Git repository

 https://github.com/kaigai/sepgsql/tree/rowsec

▌Wikipage

 http://wiki.postgresql.org/wiki/RLS

29 ROW LEVEL SECURITY - PostgreSQL Conference 2013

https://commitfest.postgresql.org/action/commitfest_view?id=18
https://github.com/kaigai/sepgsql/tree/rowsec
http://wiki.postgresql.org/wiki/RLS

Any Questions?

Page 31 PGconf.EU 2012 / PGStrom - GPU Accelerated Asynchronous Execution Module

