
Hacking PostgreSQL

PGCon 2013
Ottawa, Canada

Stephen Frost
sfrost@snowman.net

Resonate, Inc. • Digital Media • PostgreSQL • Hadoop • techjobs@resonateinsights.com • http://www.resonateinsights.com

mailto:techjobs@resonateinsights.com
http://www.resonateinsights.com

Stephen Frost
•PostgreSQL

•Major Contributor
•Implemented Roles in 8.3
•Column-Level Privileges in 8.4
•Contributions to PL/pgSQL, PostGIS

•Resonate, Inc.
•Principal Database Engineer
•Online Digital Media Company
•We're Hiring! * techjobs@resonateinsights.com

mailto:techjobs@resonateinsights.com

Do you read...
•planet.postgresql.org

PostgreSQL Source
•Overall PG source tree structure
contrib - contrib modules (Might become extensions, one day..)
doc - Documentation (SGML)
src - PostgreSQL "core" (C code, mostly)
...
src/backend - PostgreSQL server ("Back-End")
src/bin - psql, pg_dump, initdb, etc ("Front-End")
src/common - Code common to front & back
src/include - .h files, and friends
src/interfaces - libpq, ecpg
src/pl - Core procedural languages (plpgsql, plperl, tcl, etc)
src/port - Platform-specific hacks
src/tools - Developer tools (pgindent, etc)

Down the Rabbit Hole..
•Components of the backend (src/backend/...)
access - Methods for accessing different types of data (heap, btree indexes, gist/gin, etc).
catalog - Definition of the PG tables (pg_catalog.*)
commands - User-level SQL commands (ALTER, CREATE TABLE, VACUUM, etc)
executor - Duh, the Executor- runs the queries after planning / optimization
foreign - Handles Foreign Data Wrappers, user mappings, etc
lib - "General Purpose" / "Misc" functions (but they are elsewhere too..)
libpq - Backend interface to talk to libpq, aka the wireline protocol
main - main(), determines how the backend PG process is starting and hands off to the right subsystem
nodes - Generalized "Node" structure in PG and functions to copy, compare, etc
optimizer - Query optimizer, implements the costing system and generates a plan for the executor
parser - Lexer and Grammar, how PG understands the queries you send it
port - Backend-specific platform-specific hacks
postmaster - The "main" PG process that always runs, answers requests, hands off connections
regex - Henry Spencer's regex library, also used by TCL, maintained more-or-less by PG now
replication - Backend components to support replication, shipping WAL logs, reading them in, etc
rewrite - Query rewrite engine, used with RULEs
snowball - Snowball stemming, used with full-text search
storage - Storage layer, handles most direct file i/o, support for large objects, etc
tcop - "Traffic Cop"- this is what gets the actual queries, runs them, etc
tsearch - Full-Text Search engine
utils - Various back-end utility components, cacheing system, memory manager, etc

So you have an idea..
•Where to begin?

•Depends on your idea, but I prefer the parser
•Grammar drives a lot of things
•Also one of the hardest items to get agreement on

•The grammar is in src/backend/parser/
•scan.l - lexer, handles tokenization
•gram.y - actual grammar
•Built with flex (lexer) and bison (parser)
•Rarely have to change the lexer

Modifying the grammar
•Grammar is a set of productions

•"main" is the 'stmt' production
•Lists all the top-level commands
•Each is its own production then

stmt :
 AlterEventTrigStmt
 | AlterDatabaseStmt
 | AlterDatabaseSetStmt
 ...
 | CopyStmt

CopyStmt : COPY opt_binary qualified_name opt_column_list opt_oids
 copy_from opt_program copy_file_name copy_delimiter opt_with copy_options
 {
 CopyStmt * n = makeNode(CopyStmt);
 n->relation = $3;

Modifying CopyStmt
•Add it into the COPY production
•Modify the C template code as needed

•C code is extracted by bison
•Run through a set of changes (eg: changes "$3")
•Compiled as part of the overall parser (gram.c)

•Remember to update the keywords list (kwlist.h)
•Also remember to add to unreserved_keywords
•Try to avoid creating new reserved keywords

Adding an option to COPY
--- a/src/backend/parser/gram.y
+++ b/src/backend/parser/gram.y
@@ -521,8 +521,8 @@ static void processCASbits(int cas_bits, int location, const char * constrType,
- COMMITTED CONCURRENTLY CONFIGURATION CONNECTION CONSTRAINT CONSTRAINTS
- CONTENT_P CONTINUE_P CONVERSION_P COPY COST CREATE
+ COMMITTED COMPRESSED CONCURRENTLY CONFIGURATION CONNECTION CONSTRAINT
+ CONSTRAINTS CONTENT_P CONTINUE_P CONVERSION_P COPY COST CREATE
@@ -2403,6 +2403,10 @@ copy_opt_item:
 {
 $$ = makeDefElem("header", (Node *)makeInteger(TRUE));
 }
+ | COMPRESSED
+ {
+ $$ = makeDefElem("compressed", (Node *)makeInteger(TRUE));
+ }
 | QUOTE opt_as Sconst
 {
 $$ = makeDefElem("quote", (Node *)makeString($3));
@@ -12471,6 +12475,7 @@ unreserved_keyword:
 | COMMITTED
+ | COMPRESSED
 | CONFIGURATION

What about the code?
•COPY has a function to process options

•Surprise, it's called "ProcessCopyOptions"
•COPY is defined in backend/commands/copy.c

•COPY state info
•Local state structure CopyStateData also in copy.c
•Not in a .h because only COPY needs it
•Define structures in .c files near the top

Option handling in copy.c
@@ -109,6 +119,7 @@ typedef struct CopyStateData
 bool binary; /* binary format? * /
+ bool compressed; /* compressed file? * /
 bool oids; /* include OIDs? * /
@@ -889,6 +1186,20 @@ ProcessCopyOptions(CopyState cstate,
 }
+ else if (strcmp(defel->defname, "compressed") == 0)
+ {
+#ifdef HAVE_LIBZ
+ if (cstate->compressed)
+ ereport(ERROR,
+ (errcode(ERRCODE_SYNTAX_ERROR),
+ errmsg("conflicting or redundant options")));
+ cstate->compressed = defGetBoolean(defel);
+#else
+ ereport(ERROR,
+ (errcode(ERRCODE_SYNTAX_ERROR),
+ errmsg("Not compiled with zlib support.")));
+#endif
+ }
 else if (strcmp(defel->defname, "oids") == 0)

That's it, right?
•Not hardly.
•Lots of changes to copy.c

•New 'COMPRESSED' state
•Tracking gzFile instead of FILE*
•Using gzread / gzwrite instead of read/write

•Data in and out
•All is buffered with 2 buffers
•Uncompressed data
•Compressed data

Diffstat
doc/src/sgml/ref/copy.sgml | 12 ++
src/backend/commands/copy.c | 458 +++-----
src/backend/parser/gram.y | 9 +-
src/backend/storage/file/fd.c | 97 ++++++++++++
src/include/parser/kwlist.h | 1 +
src/include/storage/fd.h | 9 ++
src/test/regress/input/copy.source | 20 +++
src/test/regress/output/copy.source | 18 +++
8 files changed, 583 insertions(+), 41 deletions(-)

•Documentation updates in doc/src
•Modify fd.c to support compressed files

•fd.c provides file descriptor cacheing
•Added: AllocateFileGz, FreeFileGz

•Regression test updates

COPY PIPE
•Follow the mailing lists
•Watch for others working on similar capabilities
•Try to think about general answers, not specific
•Be supportive of other ideas and approaches
•Send and receive COPY data from program instead
•E.g. for gzipped files
postgres=# COPY t FROM PROGRAM 'zcat /tmp/t.csv.gz'

Hacking the PG way
•PG has specific ways to do

•Memory management
•Error logging / cleanup
•Linked lists
•Catalog lookups
•Nodes
•Datums
•Code Style

•How to submit your patch

Memory Handling
•All memory is part of a memory context
•Allocated through palloc()
•Contexts exist for most of what you would expect

•CurrentMemoryContext - what pg_malloc() will use
•TopMemoryContext - Backend Lifetime
•Per-Query Context
•Per-Tuple Context

Logging from PG
•Use ereport() with errcode() and errmsg()
•error level and errmsg() are required
•PG has a style guide for error messages
•ERROR or higher and PG will handle most cleanup

•Rolls back transaction
•Frees appropriate memory contexts

+ if (gzwrite(cstate->copy_gzfile, fe_msgbuf->data,
+ fe_msgbuf->len) != fe_msgbuf->len)
+ ereport(ERROR,
+ (errcode_for_file_access(),
+ errmsg("could not write to COPY file: %m")));

Catalog Lookups
•SysCache

•General function 'SearchSysCache'
•Defined in utils/cache/syscache.c
•Also some convenience routines in lsyscache.c

•Scanning catalog tables and Snapshots
•Beware of SnapshotNow semantics
•Viewing exactly what is in the heap
•Heap can change while scanning it

Nodes
•PG has a node structure for expression trees
•Each node has a 'type' plus appropriate data
•'type' is stored in the node, allows IsA() testing
•Backend memory only, never out on disk, etc
•Create nodes using makeNode(TYPE)
•Adding node type

•Node types defined in include/nodes/nodes.h
•make / copy / equality funcs in backend/nodes/

Datums
•General data type structure
•Defined in postgres.h
•Helper macros also in postgres.h

•Example helpers, theres a bunch of them
•Int32GetDatum(int) - Returns Datum of int
•DatumGetInt32(Datum) - Returns int from Datum

Tuples
•Heap Tuple defined in include/access/htup.h
•HeapTupleData is in-memory construct
•Provides length of tuple, pointer to header
•Used in multiple ways

•Pointer to disk buffer (must be pin'd)
•Empty
•Single pmalloc'd chunk
•Seperately allocated
•Minimal Tuple structure

Tuples (more)
•HeapTupleHeaderData and friends in htup_details.h
•Number of attributes
•Provides various flags (NULL bitmap, etc)
•Data follows the header (not in the struct)
•Lots of macros for working with tuples in details

Toast
•Large values can be compressed
•May also get "TOASTed" and moved to "toast" table
•Handled as a stored-out-of-line Datum
•Need to be careful with variable length Datums
•Typically try to avoid de-TOASTing Datums until

absolutely required to

Other subsystems
•Many things have already been done
•Eg: linked list implementation (llist.h)
•Generalized code should go in common area
•Look at existing code

•Real examples help immensely
•Chances are, you will find what you need
•Portability considerations

Code Style
•Try to make your code 'fit in'
•Follow the PG style guide in the FAQ
•Beware of copy/paste
•Comments

•C-style comments only, no C++
•Generally on their own lines
•Describe why, not what or how
•Big comment blocks for large code blocks
•Functions, big conditions or loops

Submitting Patches
•Patch format

•Context diff or git-diff
•Ideally, pick which is better

•Include in email to -hackers
•Description of the patch
•Regression tests
•Documentation updates
•pg_dump support

•Register on commitfest.postgresql.org

Thank you!
Stephen Frost

sfrost@snowman.net
@net_snow

	Stephen Frost
	Do you read...
	PostgreSQL Source
	Down the Rabbit Hole..
	So you have an idea..
	Modifying the grammar
	Modifying CopyStmt
	Adding an option to COPY
	What about the code?
	Option handling in copy.c
	That's it, right?
	Diffstat
	COPY PIPE
	Hacking the PG way
	Memory Handling
	Logging from PG
	Catalog Lookups
	Nodes
	Datums
	Tuples
	Tuples (more)
	Toast
	Other subsystems
	Code Style
	Submitting Patches

