
40pt   

: R153 G0 B0 

: 

LT Medium 

: Arial 

 

40pt   

: R153 G0 B0 

黑体 

 

 

30pt 

30pt   

黑色 

: 

LT Regular 

: Arial 

 

30pt 

30pt  

黑色 

细黑体  

 

 

 

 

 

Scalable MVCC solution for  

 Many core machines 

Dilip Kumar        (dilip.kumar@huawei.com) 

Tao Ye                 (yetao1@huawei.com)  

Nirmala S            (nirmalas@huawei.com) 

Xiaojin Zheng     (zhengxiaojin@huawei.com) 
 

 2015/06/04 

 

mailto:dilip.kumar@huawei.com
mailto:dilip.kumar@huawei.com
mailto:nirmalas@huawei.com
mailto:zhengxiaojin@huawei.com


40pt   

: R153 G0 B0 

: 

LT Medium 

: Arial 

 

40pt   

: R153 G0 B0 

黑体 

 

 

30pt 

30pt   

黑色 

: 

LT Regular 

: Arial 

 

30pt 

30pt  

黑色 

细黑体  

 

 

 

 

 

Content 



40pt   

: R153 G0 B0 

: 

LT Medium 

: Arial 

 

40pt   

: R153 G0 B0 

黑体 

 

 

30pt 

30pt   

黑色 

: 

LT Regular 

: Arial 

 

30pt 

30pt  

黑色 

细黑体  

 

 

 

 

 

Multicore Scalability issue – TPCC test 

Test Environment: 

 Workload: “TPC-C” the industry standard benchmark for OLTP. 

 Hardware: System with 60 physical cores (120 threads) + SSD + 

Results: 

 Peak TPMC is hit at 25 terminals. After this increase in terminals reduces the 

 performance. I/O and CPU are under utilized and maximum number of process 

 are in idle state. 

0 

50000 

100000 

150000 

200000 

250000 

300000 

0 20 40 60 80 100 120 140 

terminals 

TPCC  tpmc results 

0 

5 

10 

15 

20 

0 20 40 60 80 100 120 140 

ternimals 

%CPU usage 

0.0  

5.0  

10.0  

15.0  

20.0  

25.0  

30.0  

0 20 40 60 80 100 120 140 

terminals 

RunQueue 

0 

20 

40 

60 

80 

100 

h
io

a 

h
io

a1
 

sd
a2

 

sd
a 

sd
a3

 

Disk %Busy linux 
Avg. WAvg. 



40pt   

: R153 G0 B0 

: 

LT Medium 

: Arial 

 

40pt   

: R153 G0 B0 

黑体 

 

 

30pt 

30pt   

黑色 

: 

LT Regular 

: Arial 

 

30pt 

30pt  

黑色 

细黑体  

 

 

 

 

 

Multicore Scalability issue - Bottleneck Analysis 

On analyzing stack for multiple concurrent terminals, it is evident that  

 

ProcArrayLock contention is increasing with number of terminals.  

  

Contention starts increasing steeply after 30 terminals and stays in constant state.  

 

This lock accounts for 80% of contention in the whole system (GetSnaphsotData 

and ProcArrayEndTransaction) 

35% 

45% 

13% 

7% 

TPCC Test Lock Wait Distribution 

GetSnapshotData 
(ProcArrayLock) 

ProcArrayEndTrans((ProcA
rrayLock) 

XlogFlush 

WalInsertLock 



40pt   

: R153 G0 B0 

: 

LT Medium 

: Arial 

 

40pt   

: R153 G0 B0 

黑体 

 

 

30pt 

30pt   

黑色 

: 

LT Regular 

: Arial 

 

30pt 

30pt  

黑色 

细黑体  

 

 

 

 

 

Concept of MVCC 

 MVCC is a concurrency control mechanism commonly used by database 

implementations to control fast, safe and concurrent access to data. 

 

     MVCC is designed to provide following features for concurrent access 

• Readers do not block writers 

• Writers do not block readers 

 

     When an object has to be overwritten, it is marked obsolete and a new copy of it 

is written by the writer. Reader reads the current version and writer affects a 

future version of data. This ensures that readers do not block writers. Since 

writer is working on a different copy of data it does not block other readers. 

 

     MVCC is generally implemented using transactionID or some timestamp 

mechanism. This is stored in each tuple so at run time, a decision can be made 

on the visibility of the tuple for any user given SQL. 

      

  



40pt   

: R153 G0 B0 

: 

LT Medium 

: Arial 

 

40pt   

: R153 G0 B0 

黑体 

 

 

30pt 

30pt   

黑色 

: 

LT Regular 

: Arial 

 

30pt 

30pt  

黑色 

细黑体  

 

 

 

 

 

MVCC in PG 
 MVCC  implemented in PG  is using transactionID. Each tuple maintains a 

xmin(XID of transaction that created it) and a xmax (XID of transaction that 

deleted it). A snapshot is taken at the beginning of a SQL statement. The main 

purpose of taking a snapshot is to  get 

• highest-numbered committed transaction 

• Lowest-numbered running transaction 

• Transactions that are currently Running 

 

• Visible tuples must have a creation transaction id that: 

     - is a committed transaction 

     - is less than the xmin transaction counter stored at query start or 

     - was not in-process at query start  

 

• Visible tuples must also have an expire transaction id that: 

     - is blank or aborted or  

     - is greater than the xmax transaction counter stored at query start or 

      - was in-process at query start 

     



40pt   

: R153 G0 B0 

: 

LT Medium 

: Arial 

 

40pt   

: R153 G0 B0 

黑体 

 

 

30pt 

30pt   

黑色 

: 

LT Regular 

: Arial 

 

30pt 

30pt  

黑色 

细黑体  

 

 

 

 

 

MVCC in PG 

 During snapshot creation, for getting all the running transaction information, a 

process takes Shared latch on ProcArrayLock (GetSnapshotData) 

 

 When a transaction is committing, it takes an exclusive latch on ProcArrayLock 

(ProcArrayEndTransaction) to update shared global variables. 

 

 When transactions – starting and ending try to use ProcArrayLock, contention 

ensues and scalability reduces. 

 

 

 



40pt   

: R153 G0 B0 

: 

LT Medium 

: Arial 

 

40pt   

: R153 G0 B0 

黑体 

 

 

30pt 

30pt   

黑色 

: 

LT Regular 

: Arial 

 

30pt 

30pt  

黑色 

细黑体  

 

 

 

 

 

  Initial CSN Snapshot Proposal 

 

• Ant Aasma have proposed a initial solution of the CSN based snapshot. 

• As per the solution, Snapshot taking cost can be reduced by converting snapshot 

to as Commit Sequence Number instead of reading transaction id list. 

• We have used this solution as our initial design idea. 

 

 

 



40pt   

: R153 G0 B0 

: 

LT Medium 

: Arial 

 

40pt   

: R153 G0 B0 

黑体 

 

 

30pt 

30pt   

黑色 

: 

LT Regular 

: Arial 

 

30pt 

30pt  

黑色 

细黑体  

 

 

 

 

 

Lock Free CSN solution 

 Main purpose of fetching all running transaction information is to know, which 

transaction committed before taking Snapshot and which after taking snapshot. 

 

 Instead of getting the list of running transaction while getting the snapshot we 

can depend upon some timeline variable. 

 

 Each transaction when committing, can increment a global number  – Commit 

Sequence Number (CSN). Any transaction which is starting, will  note down the 

current CSN number of the system during its snapshot creation – this can be 

termed as Snapshot CSN.  

 

 Now to check the visibility of any tuple, it is enough to see if CSN associated 

with its xmin and xmax is less than Snapshot CSN.  

 



40pt   

: R153 G0 B0 

: 

LT Medium 

: Arial 

 

40pt   

: R153 G0 B0 

黑体 

 

 

30pt 

30pt   

黑色 

: 

LT Regular 

: Arial 

 

30pt 

30pt  

黑色 

细黑体  

 

 

 

 

 

Lock Free CSN solution 

 By effectively having  an integer(CSN) which is shared across all backend, we 

can remove traversing Pgxact structure and thereby removing the need to 

acquire ProcArrayLock in shared mode. 

 

 One of the obvious problems for the CSN based solution is how to maintain a 

map between CSN and XID. This data structure should have the following 

properties 

• Searching should be efficient 

• Read/Write should be lock-free 

 We decided to select a circular array, in which we can directly get the XID slot 

using XID%ARRAY_SIZE. This ensures that there is no extra searching cost. 



40pt   

: R153 G0 B0 

: 

LT Medium 

: Arial 

 

40pt   

: R153 G0 B0 

黑体 

 

 

30pt 

30pt   

黑色 

: 

LT Regular 

: Arial 

 

30pt 

30pt  

黑色 

细黑体  

 

 

 

 

 

Lock Free CSN solution 

 

 XID to CSN mapping is stored in circular array called Dense Map. So that most of 

the operation can be atomic without any lock. 

 Dense Map size selected >4MB (with experiment on TPCC, beyond this size 

performance is peak). 

 Old Transactions are moved to secondary MAP, called sparse MAP 

 

 

 

 

 

 

 

 

 

 

Query 1 

   (xid X) 

Commit Sequence Number 

 
  

Xid X 

Xid Y 

Xid Z 

Dense Map 

   

 

Store in Map 

Overflow 

Query 2 

   (xid Y) 

Query 3 

   (xid Z) 



40pt   

: R153 G0 B0 

: 

LT Medium 

: Arial 

 

40pt   

: R153 G0 B0 

黑体 

 

 

30pt 

30pt   

黑色 

: 

LT Regular 

: Arial 

 

30pt 

30pt  

黑色 

细黑体  

 

 

 

 

 

Lock Free operations 

 Now major challenge is to keep the access to dense map lock free, b/w the reader 

(getting the CSN value for a transaction) and writer(reusing the slot and changing 

the transaction ID). 

Start Transaction (Writer) 

 If Slot is empty start transaction can simply use with transaction ID. 

(multiple XID entering together is protected using XIDGenLock) 

 If Slot is not Empty but XID is very OLD (not concurrent to any snapshot), 

just flush it out 

 If XID is concurrent then move it to secondary MAP. 

Commit Transaction (Writer) 

 If XID found in dense map assign the CSN. 

 If XID not found in dense map, search the slot in secondary map and assign 

the CSN 

 



40pt   

: R153 G0 B0 

: 

LT Medium 

: Arial 

 

40pt   

: R153 G0 B0 

黑体 

 

 

30pt 

30pt   

黑色 

: 

LT Regular 

: Arial 

 

30pt 

30pt  

黑色 

细黑体  

 

 

 

 

 

Lock Free operations cont.. 

Visibility Check of the tuple (Reader) 

 Read  Slot XID (Match XID with dense map Slot XID) 

 Read Slot CSN 

 Read  Slot XID again (Rematch the XID, if matches than CSN value can be 

used. Otherwise some write has overwritten the XID, then start by reading 

CSN again) 

 

 

 

 

 



40pt   

: R153 G0 B0 

: 

LT Medium 

: Arial 

 

40pt   

: R153 G0 B0 

黑体 

 

 

30pt 

30pt   

黑色 

: 

LT Regular 

: Arial 

 

30pt 

30pt  

黑色 

细黑体  

 

 

 

 

 

Conflict handling 

 While starting the new transaction if there is concurrent transaction in Slot,.  

 We move such transaction to a secondary map, called sparse map. Sparse map is 

implemented using Array of XID-CSN pair (sorted in XID order) 

 Writers takes exclusive locks on sparse map, and reader takes shared locks. 

 If a transaction is active, its XID should fall in either of dense map or sparse map. If 

it is not found in both, then the transaction is not concurrent to any snapshot 

 

 

Xid -1 

Xid -X 

New Xid-N 

Conflict the 

slot with old 

concurrent 

Xid 

Move to secondary Map     XID   CSN 

Sparse Array 



40pt   

: R153 G0 B0 

: 

LT Medium 

: Arial 

 

40pt   

: R153 G0 B0 

黑体 

 

 

30pt 

30pt   

黑色 

: 

LT Regular 

: Arial 

 

30pt 

30pt  

黑色 

细黑体  

 

 

 

 

 

      Map Cleanup 

• Sometime because of few long running query, many transaction stays in the map. 

And these should be clean up. 

 

 For cleaning up the long running transactions, long running transactions are 

identified and there snapshot is marked to be converted to XID snapshot. 

 Conversion from CSN to XID snapshot happen when long running query try to 

do the visibility check. 

 Since conversion from csn to xid is asynchronous, we have taken extra 

cleanup action to remove unwanted slots, As per this clean all the XID which is 

not overlapping b/w two transaction snapshots. 

 

 

 

Q1xmin   Q1Xmax            Q2xmin  Q2Xmax   Q3xmin  Q3Xmax  Q4min   Q5xmin   Q4xmax  Q5xmax         

These 

transactions can 

be cleaned from 

map 



40pt   

: R153 G0 B0 

: 

LT Medium 

: Arial 

 

40pt   

: R153 G0 B0 

黑体 

 

 

30pt 

30pt   

黑色 

: 

LT Regular 

: Arial 

 

30pt 

30pt  

黑色 

细黑体  

 

 

 

 

 

Start transaction 

 Get a slot for this Transaction 

from the dense MAP using XID 

% SIZE 

 If there is Old XID in Slot and 

its concurrent (either running 

or CSN is not smallest than 

global snapshot CSN min) 

 Move to Sparse Map 

 Take Sparse Map Lock 

 Copy Slot to Sparse Map 

 Release Lock 

 Set Bit for XID in XID Map 

 Reuse the Slot. 

 Assign the XID in slot and 

initialize CSN to 

INVALID_CSN. 

 

 

 



40pt   

: R153 G0 B0 

: 

LT Medium 

: Arial 

 

40pt   

: R153 G0 B0 

黑体 

 

 

30pt 

30pt   

黑色 

: 

LT Regular 

: Arial 

 

30pt 

30pt  

黑色 

细黑体  

 

 

 

 

 

End Transaction 

 

 Get a slot for this Transaction from 

the dense MAP using XID % SIZE 

 Generate New CSN(Increment 

Global CSN value) 

 Assign SUB_CSN value to all sub 

transactions. 

 Assign CSN value to main 

transaction. 

 Assign CSN value to all sub 

transactions. 

 In case of abort Assign special CSN 

called ABORT_CSN. 

 

 



40pt   

: R153 G0 B0 

: 

LT Medium 

: Arial 

 

40pt   

: R153 G0 B0 

黑体 

 

 

30pt 

30pt   

黑色 

: 

LT Regular 

: Arial 

 

30pt 

30pt  

黑色 

细黑体  

 

 

 

 

 

Visibility Check  

  

 For checking a visibility of a 

operation done by transaction (XID), 

first find the slot for the XID, using 

XID%DenseMapSize. 

 If XID matches, read CSN value and 

check the XID again. 

 If XID not match then check the 

ByteMAP, if set than search in 

Sparse Map. 

 Compare the Slot CSN with Snapshot 

CSN 

 If Slot CSN > Snapshot CSN changes 

are not visible 

 Else Changes are visible. 

 



40pt   

: R153 G0 B0 

: 

LT Medium 

: Arial 

 

40pt   

: R153 G0 B0 

黑体 

 

 

30pt 

30pt   

黑色 

: 

LT Regular 

: Arial 

 

30pt 

30pt  

黑色 

细黑体  

 

 

 

 

 

GlobalXmin and Vacuum 
 

 Though GetSnapshotData is simplified and now its just reading CSN, But many 

operations like vacuum still depends upon GlobalXmin. So we still need to 

support calculating the GlobalXmin. 

 

GlobalXmin Solution 

 Instead of calculating the Accurate Xmin it calculated delayed while Committing 

the transaction. 

 While committing the transaction Xmin is stored in pgxact in separate variable. 

 While taking the snapshot same variable is read from the self slot of pgxact and 

stored as xmin. 

 Now Vacuum can work as it is without any change. 

 

GlobalCSNMin Solution 

 At end transaction we need to calculate the GlobalCSNMin for CSN map 

cleanup. 

 Instead of maintaining Two variable GlobalXmin  and GlobalCSNMin we can 

implement vacuum logic based on GlobalCSNMin.  

 

 

 



40pt   

: R153 G0 B0 

: 

LT Medium 

: Arial 

 

40pt   

: R153 G0 B0 

黑体 

 

 

30pt 

30pt   

黑色 

: 

LT Regular 

: Arial 

 

30pt 

30pt  

黑色 

细黑体  

 

 

 

 

 

Performance Test 

    Performance CSN VS Base Pg9.4 

Test Environment: 

• Workload: “TPC-C” the industry standard benchmark for OLTP. 

• Hardware: System with 60 physical cores (120 threads) + SSD + 

Results 

• fsync=off, peak terminal=70 and peak tpmC=687,325, improve 191%  

• fsync=on, peak terminal=75 and peak tpmC=525,862, improve 316%    

 

base : Base code performance of PG9.4 with best configuration 

CSN : Lock Free CSN code performance 

CSN_1 : Lock Free CSN performance by configuration change 

 



40pt   

: R153 G0 B0 

: 

LT Medium 

: Arial 

 

40pt   

: R153 G0 B0 

黑体 

 

 

30pt 

30pt   

黑色 

: 

LT Regular 

: Arial 

 

30pt 

30pt  

黑色 

细黑体  

 

 

 

 

 

Performance Test cont.. 

    CPU and Scalability (TPCC) 

Results: 

• CSN snapshot is able to utilize all the cores of 60 cores machines. 

• CSN snapshot could scale beyond 60 cores wherein XID snapshot could not scale 

beyond 25 cores.   

 

 

0.00 

5.00 

10.00 

15.00 

20.00 

25.00 

30.00 

1 10 20 30 40 50 60 70 

Sc
al

e
 F

ac
to

r 

Terminals 

Scalability 

CSN Snapshot 

XID Snapshot 

0.00 

5.00 

10.00 

15.00 

20.00 

25.00 

30.00 

35.00 

40.00 

45.00 

1 10 20 30 40 50 60 70 

%
 C

P
U

 u
sa

ge
 

Number of Terminals 

CPU utilization 

CSN Snapshot 

XID Snapshot 



40pt   

: R153 G0 B0 

: 

LT Medium 

: Arial 

 

40pt   

: R153 G0 B0 

黑体 

 

 

30pt 

30pt   

黑色 

: 

LT Regular 

: Arial 

 

30pt 

30pt  

黑色 

细黑体  

 

 

 

 

 

Performance Test cont.. 

    Performance CSN VS Base Pg9.4 

Test Environment: 

• Workload: “PGBench (sync commit = off)”. 

• Hardware: System with 60 physical cores (120 threads) + SSD + 

 

Results 

• fsync=off, peak terminal=70 and peak TPC=89,321, improve 45%  

   

 

0 

10000 

20000 

30000 

40000 

50000 

60000 

70000 

80000 

90000 
1

 

1
0

 

2
0

 

3
0

 

4
0

 

5
0

 

6
0

 

7
0

 

8
0

 

9
0

 

1
0

0
 

TP
S 

Terminals 

Pgbench Performance 

Pg9.4 Base 

Pg9.4 CSN 

0 

10 

20 

30 

40 

50 

60 

70 

1
 

1
0

 

2
0

 

3
0

 

4
0

 

5
0

 

6
0

 

7
0

 

8
0

 

9
0

 

1
0

0
 

%
C

P
U

 u
sa

ge
 

Terminals 

Pgbench CPU busy Test 

Pg9.4 Base 

Pg9.4 CSN 



40pt   

: R153 G0 B0 

: 

LT Medium 

: Arial 

 

40pt   

: R153 G0 B0 

黑体 

 

 

30pt 

30pt   

黑色 

: 

LT Regular 

: Arial 

 

30pt 

30pt  

黑色 

细黑体  

 

 

 

 

 

       Conclusion 

 From last two experiment we can observe that now ProcArrayLock Bottleneck 

is completely removed from the system. 

 Now new bottlenecks are getting uncovered like XlogFlush Lock, Clog Partition 

Locks. 

  This is clearly visible from TPCC experiment, where by changing some 

configuration , it can scale further, but same was not possible with base code 

as it was already hitting earlier bottleneck (ProcArrayLock). 



40pt   

: R153 G0 B0 

: 

LT Medium 

: Arial 

 

40pt   

: R153 G0 B0 

黑体 

 

 

30pt 

30pt   

黑色 

: 

LT Regular 

: Arial 

 

30pt 

30pt  

黑色 

细黑体  

 

 

 

 

 

Acknowledgement 

Thanks for supporting in design and discussion 

 Prasanna, 

 Huijun Liu, 

 Guogen Zhang, 

 Qingqing Zhou, 

 Yuanyuan Nie 

 Kumar Rajeev Rastogi 

 

 



40pt   

: R153 G0 B0 

: 

LT Medium 

: Arial 

 

40pt   

: R153 G0 B0 

黑体 

 

 

30pt 

30pt   

黑色 

: 

LT Regular 

: Arial 

 

30pt 

30pt  

黑色 

细黑体  

 

 

 

 

 

What is the Next Bottleneck 

Redo ? 

Clog ? 

?? 

    PG On BIG Machine 



40pt   

: R153 G0 B0 

: 

LT Medium 

: Arial 

 

40pt   

: R153 G0 B0 

黑体 

 

 

30pt 

30pt   

黑色 

: 

LT Regular 

: Arial 

 

30pt 

30pt  

黑色 

细黑体  

 

 

 

 

 



40pt   

: R153 G0 B0 

: 

LT Medium 

: Arial 

 

40pt   

: R153 G0 B0 

黑体 

 

 

30pt 

30pt   

黑色 

: 

LT Regular 

: Arial 

 

30pt 

30pt  

黑色 

细黑体  

 

 

 

 

 

 


