

Warm standby done right

Heikki Linnakangas / Pivotal

This presentation

● About built-in tools
– Not about repmgr, WAL-e etc.

– You probably should use those tools though!

● Not about monitoring, heartbeats etc.

Part 1. Continous archiving

Setting up a WAL archive

● wal_level=archive

● archive_mode=on

● archive_command='...'

24.3.1. Setting up a WAL archive

Depending on the application and the available
hardware, there could be many different ways of
"saving the data somewhere": we could copy the
segment files to an NFS-mounted directory on
another machine, write them onto a tape drive
(ensuring that you have a way of identifying the
original name of each file), or batch them together
and burn them onto CDs, or something else entirely.

PostgreSQL User Manual

archive_command
according to the manual

● It is important that the archive command return zero exit
status if and only if it succeeds. Upon getting a zero
result, PostgreSQL will assume that the file has been
successfully archived, and will remove or recycle it.
However, a nonzero status tells PostgreSQL that the file was
not archived; it will try again periodically until it succeeds.

● The archive command should generally be designed to
refuse to overwrite any pre-existing archive file. This is
an important safety feature to preserve the integrity of your
archive in case of administrator error (such as sending the
output of two different servers to the same archive directory).

archive_command
according to the manual

Unix

archive_command =

 'test ! ­f /mnt/server/archivedir/%f &&
 cp %p /mnt/server/archivedir/%f'

Windows

archive_command =

 'copy "%p" "C:\\server\\archivedir\\%f"'

This is an example, not a recommendation, and might not work on all
platforms.

smb://server//archivedir//%25f

archive_command

Gotcha 1:

No fsync() in the example command. If the
archive server dies before the file has been
flushed to disk, it might be lost.

archive_command

Gotcha 2:

If the server crashes immediately after
archiving a segment, the server might try to
archive the same file again after restart.

How to write a robust
archive_command

● Only return zero on success
● Issue fsync() before returning
● If the file already exists in the archive, check

that the contents are identical, and return
success.

Part 2: archive_mode=always

archive_mode=always

● New feature in 9.5
● archive_mode = off | on | always

– off: no archiving

– on: archiving is enabled in master

– always: archiving is enabled in master and
standby (and archive recovery)

Continuous archiving
with a standby

Streaming

Replication

Master STANDBY

Archive

WAL data flow

Archive

● Archive_mode=always allows setting up
separate archives in master and standby

● But that's not all

Part 3: Continuous archiving
with master and standby

sharing the archive

Continuous archiving with
shared archive

Streaming

Replication

Master STANDBY

Shared
Archive

WAL Data flow

Naive approach

● archive_mode=on

● Same archive_command on both servers

● All set?

Promotion

1. The master dies

2. pg_ctl promote

3. ???

Promotion

Standby will:

1. recover any remaining WAL it had streamed,

2. create a new timeline,

3. copy the last, partial segment to the new
timeline, and start writing WAL,

4. start archiving from the new timeline

Master, standby, WAL archive

Master

000000010000000000000015
000000010000000000000016
000000010000000000000017

Standby

000000010000000000000015
000000010000000000000016
000000010000000000000017

WAL archive

000000010000000000000015
000000010000000000000016
000000010000000000000017

Master, standby, WAL archive

Master

000000010000000000000015
000000010000000000000016
000000010000000000000017
000000010000000000000018
000000010000000000000019
00000001000000000000001A

Standby

000000010000000000000015
000000010000000000000016
000000010000000000000017
000000010000000000000018
000000010000000000000019
00000001000000000000001A

WAL archive

000000010000000000000015
000000010000000000000016
000000010000000000000017

Partial segment, being written to

Master, standby, WAL archive after
promotion. 9.4 and below

Master

000000010000000000000015
000000010000000000000016
000000010000000000000017
000000010000000000000018
000000010000000000000019
00000001000000000000001A

Standby

000000010000000000000015
000000010000000000000016
000000010000000000000017
000000010000000000000018
000000010000000000000019
00000001000000000000001A
00000002000000000000001A

WAL archive

000000010000000000000015
000000010000000000000016
000000010000000000000017

00000001000000000000001A

1. Standby creates a new timeline
2. Standby archives the partial segment

Detour: Partial segment

● 16MB in size, but the rest contains garbage.
● Indistinguishable from a completed segment
● Problems:

– If the master continues running, and archives the
completed segment later.

– If the standby had fallen slightly behind and the
master had already archived the completed
segment.

Partial segment in 9.5

● The partial segment is archived with the .partial
suffix

● Not restored automatically. You can copy it into
pg_xlog manually and remove .partial suffix
– This shouldn't be necessary under normal

circumstances

Master, standby, WAL archive after
promotion

Master

000000010000000000000015
000000010000000000000016
000000010000000000000017
000000010000000000000018
000000010000000000000019
00000001000000000000001A

Standby

000000010000000000000015
000000010000000000000016
000000010000000000000017
000000010000000000000018
000000010000000000000019
00000001000000000000001A.p
artial
00000002000000000000001A
00000002000000000000001B
00000002000000000000001C

WAL archive

000000010000000000000015
000000010000000000000016
000000010000000000000017

00000001000000000000001A.p
artial
00000002000000000000001A
00000002000000000000001B

1. Standby creates a new timeline
2. Standby renames the old segment as .partial
3. Standby archives the partial segment
4. Standby startups up as master and starts archiving

Master, standby, WAL archive after
promotion

Master

000000010000000000000015
000000010000000000000016
000000010000000000000017
000000010000000000000018
000000010000000000000019
00000001000000000000001A

Standby

000000010000000000000015
000000010000000000000016
000000010000000000000017
000000010000000000000018
000000010000000000000019
00000001000000000000001A.p
artial
00000002000000000000001A
00000002000000000000001B
00000002000000000000001C

WAL archive

000000010000000000000015
000000010000000000000016
000000010000000000000017

00000001000000000000001A.p
artial
00000002000000000000001A
00000002000000000000001B
00000002000000000000001C

Segments 18-19 are never archived!Segments 18-19 are never archived!

Missing segments

● If the master had not archived all the segments
before it crashed

● Bye bye backups

archive_mode=always to the
rescue

● Can also be used with a single archive, to
ensure there are no gaps.

● (my original patch added a separate
archive_mode=shared mode for this)

archive_mode=always

● Have same archive_command in master and
standby

● Both servers will attempt to archive all
segments to same location.

● Careful, race conditions!
– Master and standby will try to archive the same file

at the same time

Shared archive summary

● Use archive_mode=always

● Make sure your archive_command is
concurrency-safe and handles duplicates

● Don't be alarmed if you see .partial files

● Still make sure your archive_command calls fsync()

Part 4: pg_receivexlog

● Runs in the archive server
● Connects to master with streaming replication
● Keeps up-to-date, not just segment granularity

pg_receivexlog

● Added 9.2
● Follows timeline changes since 9.3
● Replication slot support in 9.4
● --synchronous option added in 9.5

Part 5: pg_rewind

Failback

● Throw away old master's data directory and
restore from base backup

● You can use rsync to speed it up

● Or you can use pg_rewind

Lost transactions at failback

TLI 1 IN
SERT #

1

INSERT #3

IN
SERT #

2

TLI 2
(on standby)

Lost transactions, not
streamed to standby

pg_rewind

● Like rsync, but uses the WAL to determine
what's changed

● Scans the WAL to figure out what blocks the
lost transactions modified

● Copies anything except data files in toto

That's all folks!

● Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 36
	Slide 37

