Seyond

Query Op
From Theo

- X

LAIN

imization
y To Code

Yuto Hayamizu

Ryoji Kawamichi

2016/5/20
PGCon 2016 @ Ottawa

Historically -

Before Relational ...

 Querying was physical

* Need to understand
physical organization

* Navigate query execution
by yourself

“Which file is this table stored in?”
“How are records linked?”

“Which access path is fast for this table? ”
“What is the best order of joining tables”

2016/5/20

Historically -

Before Relational ...

* Querying was physical

* Need to understand
physical organization

* Navigate query execution
by yourself

“Which file is this table stored in?”
“How are records linked?”

“Which access path is fast for this table? ”
“What is the best order of joining tables”

2016/5/20

After Relational -

e Querying is logical

« Physical organization is
black-boxed

 Just declare what you want

~ill the Gap: Physical and Logical

SELECT * FROM DEPTD, EMPE
WHERE E.D ID = D.ID AND ...

Query Optimizer

« Storage I/O strategy
 Access path selection
« Join method selection
 Aggregation, sorting
 Resource allocation

2016/5/20

T optimizer pertectly Tills the gap...

We don't need EXPLAIN

Reality Is Tough

e Optimizer is NOT PERFECT

« Generated plans are not always optimal, sometimes
far from optimal

« \We have to take care of physical behavior

« That's why EXPLAIN is so much explained

2016/5/20

Go Beyond EXPLAIN

* Deeper understanding of optimization, better
control of your databases

« Theoretical fundamentals of query optimization
* From basic framework to cutting-edge technologies

« PostgreSQL Optimizer implementation
e Focusing on basic scan and join methods
« Behavior observation with TPC-H benchmark

2016/5/20

Qutline

* Theory: Query Optimization Framework

e Code: PostgreSQL Optimizer

e Theory: Cutting-Edge Technologies Overview
e SUMMary

2016/5/20

Query Optimization Framework

« Cost-based optimization
e Plan selection with estimated execution cost

« Most of modern optimizers, including PostgreSOL,
are cost-based

e Rule-based optimization
Plan selection with heuristically ranked rules
Fasy to produce the same result

Hard to evaluate wide variety of plans
Fx) Oracle (~10g), Hive (~0.13)

2016/5/20

Main Challenges in Cost-based Optimization

e Cost modeling is HARD

« Qverhead of CPU, I/0O, memory access, network, -+

 Cardinality estimation is HARD
« Qutput size of scans, joins, aggregations, -

 Join ordering search is HARD
« Combinatorial explosion of join ordering and access path
« Exhaustive search is NP-hard

2016/5/20

10

2016/5/20

System-R optimizer (1979)

in a Relational Database Management System

e “The standard”
 Cost estimation with 1/0 and CPU
« Cardinality estimation with table statistics
« Bottom-up plan search

* Many of modern optimizers are “System-R style”
« PostgreSOQL, MySQL, DB2, Oracle, ...

11

Cost/Cardinality

-stimation

COST = [#page fetched] + W * [#storage API calls]

weight parameter

» [#page fetched], [#storage API calls]
are estimated with cost formula and following

statistics

» NCARD(T) ...
+ TCARD(T) ...
+ ICARD(I) ..
« NINDX(I) ..

— ~+ —+ —+

2016/5/20

ne cardinality of relation T

he number of pages in relation T

ne number of distinct keys in index I
ne number of pages in index I

12

Bottom-up Plan Search

e Candidate plans for single relation
* The cheapest access path

« N-relation join ordering search
« Select the cheapest plans for each relation
« Then, find optimal join orderings of every Z-relation join

* Then, find optimal join orderings of every 3-relation join
... until N-relation

2016/5/20

X)) A Bt Cxa D

{A} {B} {C {D}
N N NN

X)) A Bt Cxa D

{A, B}

{A} {B} {C {D}
AN N A

) At B C i D

{A, By {AC {ADH B¢ {BD {CD]

(A (B} G} D}

X)) A Bt Cxt D

{ABC} {A, B, D} {A, C, D} {BCD}

A R Y

{Am{AQ{Am{BQ'{Bm{cm

Vo Bl S N

%

X)) A Bt Cxa D
(A, B, C, D}

RN

{ABQ””MBD} Uunn"{scm

A R Y

{Am{AQ{Am{BQ'{Bm{cm

Vo Bl S N

%

\VVolcano/Cascades (1993

The Volcano Optimizer Generator: Extensibility and Efficient Search

Goetz Graefe
Portland State University
graefe @ cs.pdx.edu

Abstract
Emerging database application domains demand not only
new functionality but also high performance. To satisfy
these two requirements, the Volcano project provides
efficient, extensible tools for query and request processing,
particularly for object-oriented and scientific database
systems. One of these tools is a new optimizer generator.
Data model, logical algebra, physical algebra, and optimi-
zation rules are translated by the optimizer generator into
nntimizer cource code Comnared with our earlier FX-

William J. McKenna
University of Colorado at Boulder
bill@ cs.colorado.edu

First, this new optimizer generator had to be usable both in
the Volcano project with the existing query execution
software as well as in other projects as a stand-alone tool.
Second, the new system had to be more efficient, both in
optimization time and in memory consumption for the
search. Third, it had to provide effective, efficient, and
extensible support for physical properties such as sort ord-
er and compression status. Fourth, it had to permit use of
heuristics and data model semantics to guide the search

and to nrne futile narts of the search snace Finallv_ it

« Top-down transformational plan search
* Yet another optimization approach

« Not well known as “System-R style”, but widely used in
practice
(E)x) SQL Server, Apache Hive (Apache Calcite), Greenplum
rca

« Extensible optimization framework

2016/5/20

2016/5/20

Fxtensible Optimization Framework

Query Optimizer Generator

« Generalized expression of query plan not limited
to relational data model

« Users (optimizer developers) defines actual
implementations:
« L ogical operator ... corresponds to relational algebra

« Physical algorithm ... corresponds to scan & join
methods such as sequential scan, index scan, hash
join, nested loop join

20

Top-down Transformational Searcn

« Starts from an initial “logical plan”

« Generate alternative plans with:
A) Logical operator transformation
B) Physical algorithm selection
C) Enforcing sorting order

Example: 3-way join with projection PVIOJ'
Join
Join Select T
Select R| |Select S
Proj Join
Jolin Join Select T
Select R Join Proj Select S
T Select S| |Select T Selelct R

21

Top-down Transformational Searcn

« Starts from an initial “logical plan”

« Generate alternative plans with:
A) Logical operator transformation
B) Physical algorithm selection
C) Enforcing sorting order

Example: 3-way join with projection PrIOJ
Join
Join Select T
Select R| [Select S
Proj / \ Proj \
Jolin Jolin

2016/5/20

melstlanl | Select T
SeqgScan R]SeqScan S

Select R

Select S

22

Top-down Transformational Searcn

« Starts from an initial “logical plan”

« Generate alternative plans with:
A) Logical operator transformation
B) Physical algorithm selection
C) Enforcing sorting order

Example: 3-way join with projection

2016/5/20

Proj
Jolin Proj
Join Select T Jolin
Select R| |Select S Join Select T
| |
Select R| |Select S

merge join of R and S is possible now

Benetits of Top-down approach

//EE:\A\;

i 2 SE- =
[\ / \ X X
4

* Possible to intentionally limit search space
 Effective pruning with branch-and-bound
e Limit search space with search time deadline

2016/5/20

Cost-based Optimization Basics

Two major cost-based optimization style
e System-R

« Cost modeling with statistics
« Bottom-up search

 \/olcano/Cascades

« Extensible optimizer generator
« Cost estimation is user’s responsibility

« Top-down transformational search

2016/5/20

2016/5/20

Qutline

e Code: PostgreSQL Optimizer
e Theory: Cutting-Edge Technologies Overview
e SUMMary

26

2016/5/20

PostgreSQL Optimizer

“System-R style” optimization
« Bottom-up plan search with dynamic programming
« CPU and I/O operation based cost modeling

Cost = Cseqllseq + CrandMrand T Ctuptup T

=C-N
C N
 seq _page cost e Cardinality estimation with
« random_page cost statistics
« cpu_tuple _cost « Cost formula for each plan type
 cpu_index_tuple_cost « SeqScan, IndexScan
 cpu_operator_cost « NestlLooploin, HashJoin,

(parallel_tuple_cost) MergeJoin, ...

27

Detailed Look At Basic Scan Types

* Sequential scan
o Efficient for accessing large potion of tables

* [ndex scan
 Efficient for accessing a fraction of data

Execution cost A

Sequential scan

Query selectivity
>

2016/5/20

28

cost_seqscan()
@optimizer/path/costsize.c

N of SeqScan

Ngseq = (# pages in a table)
Ttup = (# tuples in a table)

[+++ WHERE AND [i1} AND - -+ J

nop = #fqual_operator
= (#tuples) X (weight factor of A)
+ (#tuples) X (weight factor of B)
+ LI A

29

N of IndexScan

Consists of;
A) CPU cost of searching Bt-tree

(

(B) CPU cost of scanning index tuples in leaf pages
(C) 1/O cost of leaf pages

(
(

D) 1/O cost of heap pages
F) CPU cost of scanning heap tuples

2014/12/04

N of IndexScan

(A) Bt-tree search

Nop +=log,(#index_tuples) /// \‘h
BN TITT)

I/O cost of internal pages

Assumed to be always cached in the buffer W - -

(B) Scanning index tuples in leaf pages

Nitup += #qual operator
X #tleaf pages X #ituple per page X o

Selectivity o
Comes from statistics

2014/12/04

N of IndexScan
(C) 1/0 cost of index leaf pages

Nyand = Y(effective cache size, #leaf pages)

Mackert and Lohman function (Yao function)
|/O count estimation with consideration of buffer caching

. 2PNo
Hlln(2P+Ncr’P) (P<B)
2PNo
Y(N,P.o,B) =1 55 (P>Bro< 525)

2PB \ P-B -

|/O count

Selectivity o

2014/12/04

N of IndexScan

(D) 1/0 cost of heap pages

Correlation between index and heap ordering: &

o= 0:1/0 pattern is random o=1:1/0 pattern is sequential

—> —> —> —> p—>

Neeq += 02 X #match_pages
Nyrand+= (1-a?) X #match_tuples

(E) CPU cost of scanning heap tuples
Estimate the number of scanned tuples from o

2014/12/04

Detailed Look At Join Methods

 Efficient for joining large number of records
« Usually combined with sequential scans

 Efficient for joining small number of records

« Usually combined with index scans or small table
sequential scans

2016/5/20

2014/12/04

N of HashJoin

" DX Hash Join)

35

N of HashJoin

" D<|Hash Join)

é“kﬁgﬂx
Quter R Inner S

2014/12/04

Build phase

« Cost += Cost(inner)

nop += #qual_op X #inner_tuples

ntup += #inner_tuples /\—

Hashing cost

36

N of HashJoin

Build phase
-)
<] Hash Join e Cost += Cost(inner>

'n,op += #qual_op X #inner_tuples
ntup += #inner_tuples

. J

2014/12/04

37

N of HashJoin

2T T

ash Join

\

I

2014/12/04

Build phase

» Cost += Cost(inner)+ C - N

nop += #qual_op X #inner_tuples
ntup += #inner_tuples

Probe phase

» Cost += Cost(outer)+ C - N

nop +=#fqual_op X (1 + #bucket_size X 0.5)
X #outer_tuples

Hashing & table lookup (bucket search) cost

ntup += #match_tuples

38

N of HashJoin

H#buckets: 2

—

tuple '

16 records

2014/12/04

— .H

[tuple

tuple'

4 tuples are compared for
lookup in average

Estimated cost of 2-way HashJoin

4.E+07
4.E+07
3.E+07
3.E+07
2.E+07
2.E+07
1.E+07
5.E+06

0.E+00
10000

100000

1000000
of records

10000000

100000000

H#buckets : 4

!

Cpe T

| tuple m

\I/

2 tuples are compared for lookup

in average

N of NestLoopJoin

rl

ANRVAN

B scan s witn ZM
R S ;
outer InNner = W

r4

2222222222

N of NestLoopJoin

sl
e .. cier

s3
outer inner

« When #outer tuples =1
Cost = Cost(outer) + Cost(inner) + C - N

Ntup +=#inner_tuples

Nop +=#qual_operator X #inner_tuples

2014/12/04

N of NestLoopJoin .
R <

RS ; 3

outer inner sl
r3 \ r2 32

4 S3
« When #outer tuples > 1 N

Cost = Cost(outer) + Cost(inner) + C - N
+ (#outer_tuples - 1) X Cost(ReScan inner)

Higher buffer hit ratio in ReScan
— Cost of ReScan is lower than cost of IndexScan

Ntup +=#inner_tuples X #outer_tuples
TNop +=#qual_operator X #inner_tuples X #outer_tuple:

See How It Works

e [PC-H Benchmark

« Specification and tools for benchmarking data
warehouse workload

« Open source implementation: DBT-3, pg_tpch
« Schema, data generation rules and queries

« Experiments with 100GB
e Scale Factor = 100

2016/5/20

-xperimental Setup

e Dell R720xd
« Xeon (2sockets, 16cores)
e x24 NL-SAS HDD

« With PostgreSOQL 9.5

e Default cost parameter settings

* SegScan & HashJoin

* enable _seqscan = on, enable _hashjoin = on
and disables other methods

* IndexScan & NestLoopJoin

 enable_indexscan = on, enable nestloop = on
and disables other methods

2016/5/20

44

TPC-H Q.1: The Simplest Case

SELECT count(*), ... FROM lineitem
WHERE 1_shipdate BETWEEN [X] AND [Y]

Estimated cost

5.E+08
5.E+07
SeqgScan : :
5.E+06 e (Good trend estimation for each
method
5.E+05
1 10 100 1000

Selectivity (I_shipdate)

L « Estimated break-event pointis
Execution time (sec)

oo, errorneus
“ « IndexScan should be more
1000 expensive (need parameter
SegScan calibration)
100
10
1 10 100 1000

2016/5/20 Selectivity(l_shipdate) 45

TPC-H Q.3

HashJoin

y

~

NestLoop

/

AN

NestLoop | [IndexScan
/ \ lineitem
IndexScan IndexScan
customer orders

Estimated cost

Execution time (sec)

1 10 100

HashJoin+SeqgScan

-
-
-
-
-
-
-
-
-
-
-
-
-

-
-

e
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

1000

Seliiimii '

10000

1000 Hashloin+SeqgScam

100

10

1

2016/5/20

1 10 100

NestLoop+IndexScan

1000

Selectivity

-
-
-

NestLoop+IndexScan

10000 100000 1000000

SeqgScan HashJoin
lineitem / \
SeqgScan Hash
orders [
SeqgScan
customer

SELECT count(*),
FROM customer, orders, lineitem
WHERE c_custkey = o_custkey AND

o_orderkey = 1 orderkey AND
c_custkey < [X] AND
c_mktsegment = ‘MACHINERY’;

10000 100000 1000000

Similar result as in Q.1

« Good trend estimation for each

 Erroneous break-event point
without parameter calibration

46

More Complex Case
TPC-H Q.4: Semi-Join Query

Estimated cost

1.E+09

1.E+08

1.E+07 HashJoin+SeqgScan

1.E+06

1.E+05
1 10 100 1000 10000

Selectivity
Execution time (sec)

100000

10000

1000

HashJoin+SeqgScan
100

1 10 100 1000 10000

2016/5/20 Selectivity

SELECT count(*), ...
FROM orders
WHERE
o_orderdate >= €1995-01-01° AND
o_orderdate < €1995-01-01°
+ interval ‘3 month’ AND
EXISTS(
SELECT * FROM lineitem
WHERE 1 orderkey = o_orderkey
AND 1 commitdate < 1 receiptdate)

e Plan selection for semi-

join tend to be unstable

47

More Complex Case
TPC-H Q.22: Anti-Join Query

Estimated cost
1.E+11

1.E+10
1.E+09
1.E+08
1.E+07

1.E+06
1.E+00 1.E+02 1.E+04 1.E+06 1.E+08

Selectivity
Execution time (sec)

10000
1000
100
10

1

1.E+00 1.E+02 1.E+04 1.E+06 1.E+08
2016/5/20 Selectivity

SELECT count(*),
FROM supplier, lineitem 11, orders, nation
WHERE s_suppkey = 11.1 suppkey AND
o_orderkey = 11.1 orderkey AND
o_orderstatus = 'F' AND
11.1 receiptdate > 11.1 commitdate AND
EXISTS (
SELECT * FROM lineitem 12
WHERE 12.1 orderkey = 11.1 orderkey
AND 12.1 suppkey <> 11.1 suppkey)
AND NOT EXIST (
SELECT * FROM lineitem 13
WHERE 13.1 orderkey = 11.1 orderkey
AND 13.1 suppkey <> 11.1 suppkey
AND 13.1 receiptdate > 13.1 commitdate)
AND s _nationkey = n_nationkey
AND n_name = €“JAPAN'

e Difficulties in overall cost
trend estimation

48

2016/5/20

Summary: PostgreSOL
Optimizer

« Detailed look at cost modeling of basic methods

« SeqScan, IndexScan
« HashJoin, NestedlLoopJoin

e Observation with TPC-H benchmark

« Good cost trend estimation for simple join queries
« Erroneous cheapest plan selection without parameter tuning

 Difficulties with semi-join and anti-join queries

49

Qutline

e Theory: Cutting-Edge Technologies Overview
e SUMMary

2016/5/20

Cutting-

-dge Technologies

 [raditional optimization was a “closed” problem

carldlna!lty cost model
estimation

plan space
e

(SQL)

v

enumeration

query plan

« “Rethink the contract” — Swrajit Chaudhuri
« Feedback from previous execution
* Dynamic integration with execution

2016/5/20

51

Mid-query Re-optimization

[N. Kabra et.al., SIGMOD’98]

e Detects sub-optimality of executing query plan

« Query plans are annotated for later estimation
Improvement

e Runtime statistics collection

« Statistics collector probes are inserted into operators of
executing query plan

* Plan modification strategy
« Discard current execution and re-optimize whole plan

« Re-optimizer only subtree of the plan that are not
started yet

« Save partial execution result and generate new SQL
using the result

2016/5/20

Plan Bouquet

[A. Dutt et.al., SIGMOD’14]

e Generate a set of plans for each selectivity range

« Estimation improvement with runtime statistics
collection

e Evaluation with PostgreSQL

2016/5/20

Sounding Impact of Estimation Error

[T. Neumann et.al., BTW Conf ‘13]
« “Uncertainty” analysis of cost estimation
« Optimality sensitivity to estimation error

« Execute partially to reduce uncertainty

2016/5/20 54

Qutline

e SUMMary

2016/5/20

Summary

« Cost-based optimization framework
« System-R style bottom-up optimization
 \/olcano style top-down optimization

* Detailed look at PostgreSQL optimizer
« Cost modeling of basic scan and join method
« Experiment with TPC-H benchmark

 Brief overview of cutting-edge technologies

