
PostgreSQL
when it’s not your job.

Christophe Pettus
PostgreSQL Experts, Inc.

PGCon 2016

Welcome!

• Christophe Pettus

• CEO of PostgreSQL Experts, Inc.

• Based in sunny Alameda, California.

• Technical blog: thebuild.com

• Twitter: @xof

• christophe.pettus@pgexperts.com

mailto:christophe.pettus@pgexperts.com
mailto:christophe.pettus@pgexperts.com

What is this?

• “Just enough” PostgreSQL for a developer.

• PostgreSQL is a rich environment.

• Far too much to learn in a single tutorial.

• But enough to be dangerous!

The DevOps World

• “Integration between development and
operations.”

• “Cross-functional skill sharing.”

• “Maximum automation of development and
deployment processes.”

• “We’re way too cheap to hire real
operations staff. Anyway: Cloud!”

This means…

• No experienced DBA on staff.

• Have you seen how much those people
cost, anyway?

• Development staff pressed into duty as
database administrators.

• But it’s OK… it’s PostgreSQL!

Everyone Loves PostgreSQL!

• Fully ACID-compliant relational database
management system.

• Richest set of features of any modern
production RDMS.

• Relentless focus on quality, security, and
spec compliance.

• Capable of very high performance.

PostgreSQL Can Do It.

• Tens of thousands of transactions per
second.

• Enormous databases (into the petabyte
range).

• Supported by pretty much any application
stack you can imagine.

Cross-Platform.

• Operates natively on all modern operating
systems.

• Plus Windows.

• Scales from development laptops to huge
enterprise clusters.

Installation

If you have packages…

• … use them!

• Provides platform-specific scripting, etc.

• RedHat-flavor and Debian-flavor have their
own repositories.

• Other OSes have a variety of packaging
systems.

If you use packages…

• … get them from the community-
maintained repos.

• Distros sometimes have older versions.

• apt.postgresql.org for Debian-derived.

• yum.postgresql.org for RedHat-derived.

Or you can build from source.

• Works on any platform.

• Maximum control.

• Requires development tools.

• Does not come with platform-specific
utility scripts (/etc/init.d, etc.).

• A few (very rare) config options require
rebuilding.

Other OSes.

• Windows: One-click installer available.

• OS X: One-click installer, MacPorts, Fink
and Postgres.app from Heroku.

• For other OSes, check postgresql.org.

Creating a database cluster.

• A single PostgreSQL server can manage
multiple databases.

• The whole group on a single server is
called a “cluster”.

• This is very confusing, yes. We’ll use the
term “server” here.

initdb

• The command to create a new database is
called initdb.

• It creates the files that will hold the
database.

• It doesn’t automatically start the server.

• Many packaging systems automatically
create and start the server for you.

Note on Debian/Ubuntu

• Debian-style packaging has a sophisticated
cluster management system.

• Use it! It will make your life much easier.

• pg_createcluster instead of initdb

Just Do This.

• Always create databases as UTF-8.

• Once created, cannot be changed.

• Converting from “SQL ASCII” to a real
encoding is a total nightmare.

• Use your favorite locale, but not “C locale.”

• UTF-8 and system locale are the defaults.

Checksums.

• Introduced in 9.3.

• Maintains a checksum for data pages.

• Very small performance hit. Use it.

• initdb option.

• Can add in /etc/postgresql-common/
createcluster.conf for Debian packaging.

Examples

• Using initdb:

• initdb -D /data/9.5/ -k -E UTF8 \
--locale=en_US.UTF-8

• Using pg_createcluster:

• pg_createcluster 9.5 main -D /data/9.5/main \
-E UTF8 --locale=en_US.UTF-8 -- -k

Other Important Things.

• Create a separate database volume /
partition for data.

• Do not put the version number in the
mountpoint (/data, not /data/9.5).

• EXT4 or XFS for the filesystem (ZFS is
extra for experts).

pg_ctl

• Built-in command to start and stop
PostgreSQL.

• Frequently called by init.d, upstart or other
scripts.

• Use the package-provided scripts if they
exist; they do the right thing.

Stopping PostgreSQL.

• Three “shutdown modes”: smart, fast,
immediate. -m option on pg_ctl

• Don’t use smart. It’s not really that smart.

• Use fast (cancels queries, does shutdown).

• Use immediate if required.

• immediate crashes PostgreSQL!

psql

• Command-line interface to PostgreSQL.

• Run queries, examine the schema, look at
PostgreSQL’s various views.

• Get friendly with it! It’s very useful for
doing quick checks.

PostgreSQL directories

• All of the data lives under a top-level
directory.

• Let’s call it $PGDATA.

• Find it on your system, and do a ls.

• The data lives in “base”.

• The transaction logs live in pg_xlog.

NEVER EVER TOUCH THESE THINGS!

• The contents of subdirectories and special
files in $PGDATA should never, ever be
modified directly. Ever.

• Exceptions: pg_log (if you put the log files
there), and the configuration files.

• pg_xlog and pg_clog are off-limits!

Tablespaces

• A quick note on tablespaces.

• Don’t use them.

• Extra for experts: Use them if you have
unusual storage configuration, but they will
make your life more complex.

• NEVER put the tablespace storage inside
$PGDATA.

Configuration files.

• On most installations, the configuration
files live in $PGDATA.

• On Debian-derived systems, they live in
/etc/postgresql/9.5/main/...

• Find them. You should see:

• postgresql.conf

• pg_hba.conf

Configuration

Configuration files.

• Only two really matter:

• postgresql.conf — most server settings.

• pg_hba.conf — who gets to log in to
what databases?

postgresql.conf

• Holds all of the configuration parameters
for the server.

• Find it and open it up on your system.

We’re All Going To Die.

It Can Be Like This.

Important parameters.

• Logging.

• Memory.

• Checkpoints.

• Planner.

• You’re done.

• No, really, you’re done!

Logging.

• Be generous with logging; it’s very low-
impact on the system.

• It’s your best source of information for
finding performance problems.

Where to log?

• syslog — If you have a syslog infrastructure
you like already.

• Otherwise, CSV format to files.

• “Standard format” or “stderr” is obsolete.
There is no good reason to use it anymore.

What to log?

log_destination = 'csvlog'
log_directory = 'pg_log'
logging_collector = on
log_filename = 'postgres-%Y-%m-%d_%H%M%S'
log_rotation_age = 1d
log_rotation_size = 1GB
log_min_duration_statement = 250ms
log_checkpoints = on
log_connections = on
log_disconnections = on
log_lock_waits = on
log_temp_files = 0

Memory configuration

• shared_buffers

• work_mem

• maintenance_work_mem

shared_buffers

• Below 2GB (?), set to 20% of total system
memory.

• Below 64GB, set to 25% of total system
memory.

• Above 64GB (lucky you!), set to 16GB.

• Done.

work_mem

• Start low: 32-64MB.

• Look for ‘temporary file’ lines in logs.

• Set to 2-3x the largest temp file you see.

• Can cause a huge speed-up if set properly!

• But be careful: It can use that amount of
memory per planner node.

maintenance_work_mem

• 10% of system memory, up to1GB.

• Maybe even higher if you are having
VACUUM problems.

• (We’ll talk about VACUUM later.)

effective_cache_size

• Set to the amount of file system cache
available.

• If you don’t know, set it to 75% of total
system memory.

• And you’re done with memory settings.

Checkpoints.

• A complete flush of dirty buffers to disk.

• Potentially a lot of I/O.

• Done when the first of two thresholds are
hit:

• A particular number of WAL segments
have been written.

• A timeout occurs.

Checkpoint settings, 9.4 and earlier.

wal_buffers = 16MB

checkpoint_completion_target = 0.9

checkpoint_timeout = 10m-30m # Depends on restart time

checkpoint_segments = 32 # To start.

Checkpoint settings, 9.5 and later.

wal_buffers = 16MB

checkpoint_completion_target = 0.9

checkpoint_timeout = 10m-30m # Depends on restart time

min_wal_size = 512MB

max_wal_size = 2GB

Checkpoint settings, 9.4 and earlier.

• Look for checkpoint entries in the logs.

• Happening more often than
checkpoint_timeout?

• Adjust checkpoint_segments so that
checkpoints happen due to timeouts
rather filling segments.

• And you’re done with checkpoint settings.

Checkpoint settings, 9.5 and later

• Look for checkpoint entries in the logs.

• Happening more often than
checkpoint_timeout?

• Step 1: Adjust min_wal_size so that
checkpoints happen due to timeouts rather
filling segments.

• More will improve performance.

Checkpoint settings, 9.5 and later

• Step 2: Adjust max_wal_size to be about
three times min_wal_size.

• More will improve performance.

• And you’re done with checkpoint settings.

Checkpoint settings notes.

• Pre-9.5, the WAL can take up to 3 x 16MB
x checkpoint_segments on disk.

• 9.5+, the WAL varies between
min_wal_size and max_wal_size.

• Restarting PostgreSQL from a crash can
take up to checkpoint_timeout (but usually
much less).

Planner settings.

• effective_io_concurrency — Set to the
number of I/O channels; otherwise, ignore
it.

• random_page_cost — 3.0 for a typical
RAID10 array, 2.0 for a SAN, 1.1 for
Amazon EBS.

• And you’re done with planner settings.

Do not touch.

• fsync = on

• Never change this.

• synchronous_commit = on

• Change this, but only if you understand
the data loss potential.

Changing settings.

• Most settings just require a server reload
to take effect.

• Some require a full server restart (such as
shared_buffers).

• Many can be set on a per-session basis!

pg_hba.conf

Users and roles.

• A “role” is a database object that can own
other objects (tables, etc.), and that has
privileges (able to write to a table).

• A “user” is just a role that can log into the
system; otherwise, they’re synonyms.

• PostgreSQL’s security system is based
around users.

Basic user management.

• Don’t use the “postgres” superuser for
anything application-related.

• Sadly, you probably will have to grant
schema-modifications privileges to your
application user, if you use migrations.

• If you don’t have to, don’t.

User security.

• By default, database traffic is not encrypted.

• Turn on ssl if you are running in a cloud
provider.

• For pre-9.4, set ssl_renegotiation_limit = 0.

The WAL.

Why are we talking about this now?

• The Write-Ahead Log is key to many
PostgreSQL operations.

• Replication, crash recovery, etc., etc.

• Don’t worry (too much!) about the
internals.

The Basics.

• When each transaction is committed, it is
logged to the write-ahead log.

• The changes in that transaction are flushed
to disk.

• If the system crashes, the WAL is “replayed”
to bring the database to a consistent state.

A continuous record of changes.

• The WAL is a continuous record of changes
since the last checkpoint.

• Thus, if you have the disk image of the
database, and every WAL record since that
was created…

• … you can recreate the database to the
end of the WAL.

pg_xlog

• The WAL is stored in 16MB segments in
the pg_xlog directory.

• Don’t mess with it! Never delete anything
out of it!

• Records are automatically recycled when
they are no longer required.

WAL archiving.

• archive_command

• Runs a command each time a WAL
segment is complete.

• This command can do whatever you want.

• What you want is to move the WAL
segment to someplace safe…

• … on a different system.

On a crash…

• When PostgreSQL restarts, it replays the
WAL log to bring itself back to a consistent
state.

• The WAL segments are essential to proper
crash recovery.

• The longer since the last checkpoint, the
more WAL it has to process.

sychronous_commit

• When “on”, COMMIT does not return until
the WAL flush is done.

• When “off”, COMMIT returns when the
WAL flush is queued.

• Thus, you might lose transactions on a
crash.

• No danger of database corruption.

Backup and
Recovery

pg_dump

• Built-in dump/restore tool.

• Takes a logical snapshot of the database.

• Does not lock the database or prevent
writes to disk.

• Low (but not zero) load on the database.

pg_restore

• Restores database from a pg_dump.

• Is not a fast operation.

• Great for simple backups, not suitable for
fast recovery from major failures.

pg_dump / pg_restore advice

• Back up globals with pg_dumpall --globals-
only.

• Back up each database with pg_dump using
--format=custom.

• This allows for a parallel restore using
pg_restore.

pg_restore

• Restore using --jobs=<# of cores + 1>.

• Most of the time in a restore is spent
rebuilding indexes; this will parallelize that
operation.

• Restores are not fast.

PITR backup / recovery

• Remember the WAL?

• If you take a snapshot of the data
directory…

• … it won’t be consistent, but if we add the
WAL records…

• … we can bring it back to consistency.

Getting started with PITR.

• Decide where the WAL segments and the
backups will live.

• Configure archive_command properly to
do the copying.

Creating a PITR backup.

• SELECT pg_start_backup(...);

• Copy the disk image and any WAL files that
are created.

• SELECT pg_stop_backup();

• Make sure you have all the WAL segments.

• The disk image + WAL segments are your
backup.

WAL-E

• http://github.com/wal-e/wal-e

• Provides a full set of appropriate scripting.

• Automates create PITR backups into AWS
S3.

• Highly recommended!

http://github.com/wal-e/wal-e
http://github.com/wal-e/wal-e

PITR Restore

• Copy the disk image back to where you
need it.

• Set up recovery.conf to point to where the
WAL files are.

• Start up PostgreSQL, and let it recover.

How long will this take?

• The more WAL files, the longer it will take.

• Generally takes 10-20% of the time it took
to create the WAL files in the first place.

• More frequent snapshots = faster recovery
time.

“PITR”?

• Point-in-time recovery.

• You don’t have to replay the entire WAL
stream.

• It can be stopped at a particular
timestamp, or transaction ID.

• Very handy for application-level problems!

Replication.

• Hey, what if we sent the WAL directly to
another server?

• We could have that server keep up to date
with the primary server!

• And that’s how PostgreSQL replication
works.

WAL Archiving.

• Each 16MB segment is sent to the
secondary when complete.

• The secondary reads it, and applies it to its
copy.

• Make sure the WAL file copied
automatically.

• Use rsync, WAL-E, etc., not scp.

Hmm… but what if we…

• … transmitted the WAL changes directly to
the secondary without having to ship the
file?

• Great idea!

• Such a great idea, PostgreSQL implements
it!

• That’s what Streaming Replication is.

Streaming Replication Basics.

• The secondary connects via a standard
PostgreSQL connection to the primary.

• As changes happen on the primary, they are
sent down to the secondary.

• The secondary applies them to its local
copy of the database.

recovery.conf

• All replication is orchestrated through the
recovery.conf file.

• Always lives in your $PGDATA directory.

• Controls how to connect to the primary,
how far to recover (for PITR), etc., etc.

• Also used if you are bringing the server up
as a PITR recovery instead of replication.

Disaster recovery.

• Always have a disaster recovery strategy.

• What if you data center / AWS region goes
down?

• Have a plan for recovery from a remote
site.

• WAL archiving is a great way to handle this.

pg_basebackup

• Utility for doing a snapshot of a running
server.

• Easiest way to take a snapshot to start a
new secondary.

• Can also be used as an archival backup.

Backup Notes.

• Always test your backups. Always, always,
always.

• Give them to developers to prime their
dev systems.

• Do not backup to mounted network (NFS,
etc.) shares.

Replication!

Replication, the good.

• Easy to set up.

• Schema changs are automatically replicated.

• Secondary can be used to handle read-only
queries for load balancing.

• Very few gotchas; it either works or it
doesn’t, and it is vocal about not working.

Replication, the bad.

• Entire database or none of it.

• No writes of any kind to the secondary.

• This includes temporary tables.

• Some things aren’t replicated.

• Temporary tables, unlogged tables.

Advice?

• Start with WAL-E.

• The README tells you everything you
need to know.

• Handles a very large number of complex
replication problems easily.

• As you scale out of it, you’ll have the
relevant experience.

Trigger-based replication

• Installs triggers on tables on master.

• A daemon process picks up the changes
and applies them to the secondaries.

• Third-party add-ons to PostgreSQL.

Trigger-based rep: Good.

• Highly configurable.

• Can push part or all of the tables; don’t
have to replicate everything.

• Multi-master setups possible (Bucardo).

Trigger-based rep: The bad.

• Fiddly and complex to set up.

• Schema changes must be pushed out
manually.

• Imposes overhead on the master.

New in 9.4! Logical Decoding.

• A framework for doing logical replication
directly in the PostgreSQL core.

• No triggers!

• Right now, needs C programming to
actually implement anything…

• … but great things are coming.

Transactions,
MVCC and
VACUUM

“Transaction”

• A unit of which which must be:

• Applied atomically to the database.

• Invisible to other database clients until it
is committed.

The Classic Example.

BEGIN;
INSERT INTO transactions(account_id, value, offset_id)
 VALUES (11, 120.00, 14);
INSERT INTO transactions(account_id, value, offset_id)
 VALUES (14, -120.00, 11);
COMMIT;

Transaction Properties.

• Once the COMMIT completes, the data has
been written to permanent storage.

• If a database crash occurs, any transactions
will be COMMITed or not; no half-done
transactions.

• No transaction can (directly) see another
transaction in progress.

In PostgreSQL…

• Everything runs inside of a transaction.

• If no explicit transaction, each statement is
wrapped in one for you.

• This has certain consequences for
database-modifying functions.

• Everything that modifies the database is
transactional, even schema changes.

A brief warning…

• Many resources are held until the end of a
transaction.

• Temporary tables, working memory,
locks, etc.

• Keep transactions brief and to the point.

• Be aware of IDLE IN TRANSACTION
sessions.

Transaction would be easy…

• … if databases were single user.

• They’re not.

• Thank goodness.

• So, how do we handle concurrency control
when two sessions are trying to use the
same data?

The Problem.

• Process 1 begins a transaction.

• Process 2 begins a transaction.

• Process 1 updates a tuple.

• Process 2 tries to read that tuple.

• What happens?

Bad Things.

• Process 2 can’t get the new version of the
tuple (ACID [generally] prohibits dirty
reads).

• But where does it get the old version of
the tuple from?

• Memory? Disk? Special roll-back area?

• What if we touch 250,000,000 rows?

Some Approaches.

• Lock the whole database.

• Lock the whole table.

• Lock that particular tuple.

• Reconstruct the old state from a rollback
area.

• None of these are particularly satisfactory.

Multi-Version Concurrency Control.

• Create multiple “versions” of the database.

• Each transaction sees its own “version.”

• We call these “snapshots” in PostgreSQL.

• Each snapshot is a first-class member of the
database.

• There is no privileged “real” snapshot.

The Implications.

• Readers do not block readers.

• Readers do not block writers.

• Writers do not block readers.

• Writers only block writers to the same
tuple.

Snapshots.

• Each transaction maintains its own
snapshot of the database.

• This snapshot is created when a statement
or transaction starts (depending on the
transaction isolation mode).

• The client only sees the changes in its own
snapshot.

Nothing’s Perfect.

• PostgreSQL will not allow two snapshots
to “fork” the database.

• If this happens, it resolves the conflict with
locking or with an error, depending on the
isolation mode.

• Example: Two separate clients attempt to
update the same tuple.

Isolation Modes.

• PostgreSQL supports:

• READ COMMITTED — The default.

• REPEATABLE READ

• SERIALIZABLE

• It does not support:

• READ UNCOMMITTED (“dirty read”)

When does a snapshot begin?

• In READ COMMITTED, each statement
starts its own snapshot.

• Thus, it sees anything that has committed
since the last statement.

• If it attempts to update a tuple another
transaction has touched, it blocks until that
transaction commits.

Higher isolation modes.

• REPEATABLE READ and SERIALIZABLE
take the snapshot when the transaction
begins.

• Snapshot lasts until the end.

• An attempt to modify a tuple another
transaction has changed blocks…

• … and returns an error if that
transaction commits.

Wait, what?

• PostgreSQL attempts to maintain an
illusion of a perfect snapshot.

• But if it can’t, it throws an error.

• The application then can retry the
transaction against the new, updated
snapshot.

SERIALIZABLE

• Not every “conflict” can be detected at the
single tuple-level.

• INSERTing calculated values.

• SERIALIZABLE detects these using
predicate locking.

• Requires some extra overhead, but
remarkably efficient.

MVCC consequences.

• Deleted tuples are not (usually)
immediately freed.

• Tuples on disk might not be available to
be readily checked.

• This results in dead tuples in the database.

• Which means: VACUUM!

VACUUM

• VACUUM’s primary job is to scavenge
tuples that are no longer visible to any
transaction.

• They are returned to the free space for
reuse.

• autovacuum generally handles this problem
for you without intervention.

ANALYZE

• The planner requires statistics on each
table to make good guesses for how to
execute queries.

• ANALYZE collects these statistics.

• Done as part of VACUUM.

• Always do it after major database changes
— especially a restore from a backup.

“Vacuum’s not working.”

• It probably is.

• The database generally stabilize at 20% to
50% bloat. That’s acceptable.

• If you see autovacuum workers running,
that’s generally not a problem.

“No, really, VACUUMs not working!”

• Long-running transactions, or “idle-in-
transaction” sessions?

• Manual table locking?

• Very high write-rate tables?

• Many, many tables (10,000+)?

Unclogging the VACUUM.

• Reduce the autovacuum sleep time.

• Increase the number of autovacuum
workers.

• Do low period manual VACUUMs.

• Fix IIT sessions, long transactions, manual
locking.

Excessive VACUUM Load.

• “It’s never twins, it’s never lupus, and it’s
never autovacuum.”

• Autovacuum is rarely the culprit.

• Diagnosis: Turn off autovacuum
(temporarily! never permanently!) to see if
that unloads the I/O subsystem.

Adjusting Vacuum.

• The first and safest way to “lighten”
autovacuum is to reduce
autovacuum_vacuum_cost_delay.

• Default 20ms, start by turning down to
100ms.

VACUUM FREEZE

• Details are tedious, but:

• A periodic “major” vacuum that
PostgreSQL must perform to prevent
transaction ID wraparound.

• Generally, not a problem, but for high-
update rate, large databases, can be a I/O
issue.

Avoiding VACUUM FREEZE problems.

• Do a manual VACUUM FREEZE at low-load
periods.

• Every 1-4 months depending on transaction
load.

• Can use the built-in vacuumdb tool:

• vacuumdb --all --freeze --analyze

Schema Design.

A grab-bag of notes.

• Schema design is a deep topic.

• This is just a quick set of random important
things.

NULL

• NULL is a total pain in the neck.

• Sometimes, you have to deal with NULL,
but:

• Only use it to mean “missing value.”

• Never, ever have it as a meaningful value in
a key field.

• WHERE NOT IN (SELECT ...)

JSON.

• It’s a core type.

• Not a contrib/ or extension module.

• Introduced in 9.2.

• Enhanced in 9.3.

• And really enhanced in 9.4.

We liked JSON so much…

• … we created two types.

• json

• jsonb

• json is a pure text representation.

• jsonb is a parsed binary representation.

• Each can be cast to the other, of course.

json type.

• Stores the actual json text.

• Whitespace included.

• What you get out is what you put in.

• Checked for correctness, but not
otherwise processed.

Why use json?

• You are storing the json and never
processing it.

• You need to support two JSON “features”:

• Order-preserved fields in objects.

• Duplicate keys in objects.

• For some reason, you need the exact JSON
text back out.

Oh, and…

• jsonb wasn’t introduced until 9.4.

• So, if you are on 9.2-9.3, json is what you’ve
got.

• Otherwise, you want to use jsonb.

jsonb

• Parsed and encoded on the way in.

• Stored in a compact, parsed format.

• Considerably more operator and function
support.

• Has indexing support.

Very Large Objects

• Let’s say 1MB or more.

• Store them in files, store metadata in the
database.

• The database API is not designed for
passing large objects around.

Many-to-Many Tables

• These can get extremely large.

• Consider replacing with array fields.

• Either one way, or both directions.

• Can use a trigger to maintain integrity.

• Much smaller and more efficient.

• Depends, of course, on usage model.

Character Encoding.

• Use UTF-8.

• Just. Do. It.

• There is no compelling reason to use any
other character encoding.

• One edge case: the bottleneck is sorting
text strings. This is very, very rare.

Time Representation.

• Always use TIMESTAMPTZ.

• TIMESTAMP is a bad idea.

• TIMESTAMPTZ is “timestamp, converted to
UTC.”

• TIMESTAMP is “timestamp, at some time
zone but we don’t know which one, hope
you do.”

Indexing

Test your database
knowledge!

What does the SQL standard require for indexes?

Trick Question!

It doesn’t.

• The database should work identically
whether or not you have indexes.

• Of course, “identically” in this case does
not mean “just as fast.”

• No real-life database can work properly
without indexes.

PostgreSQL Index Types.

• B-Tree.

• Hash.

• GiST.

• SP-GiST.

• GIN.

B-Tree Indexes.

• The standard PostgreSQL index is a B-tree.

• Provides O(log N) access to leaf notes.

• Provides total ordering.

• Operates on scalar values that implement
standard comparison operators.

B-Tree Index Types.

• Single column.

• Multiple column (composite).

• Expression (“functional”) indexes.

Single Column B-Trees

• The simplest index type.

• Can be used to optimize searches on <,
<=, =, >=, >.

• Can be used to retrieve rows in sorted
order on that column.

When to create?

• If a query uses that column, and…

• … uses one of the comparison
operators.

• … and selects <10-15% of the rows.

• … and is run frequently.

• … the index will likely be helpful.

Indexes and JOINs

• Indexes can accelerate JOINs considerably.

• But the usual rules apply.

• Generally, they help the most when
indexing the key on the larger table and…

• … that results in high selectivity against the
smaller table.

Indexes and Aggregates.

• Some GROUP BY and related operations
can benefit from an index.

• Often only in the presence of a HAVING
clause, though.

• If it has to scan the whole index, it might as
well scan the whole table.

Mandatory indexes.

• Constraints must have indexes to enforce
them.

• Just accept those.

Ascending vs Descending?

• By default, B-trees index in ascending order.

• Descending indexes are much faster in
retrieving tuples in descending order.

• So, if the primary function is descending
sortation, use that.

• Otherwise, just use ascending order.

Composite Indexes.

• A single index can have multiple columns.

• The columns must be used left-to-right.

• An index on (A, B, C) does not help a
query on just C.

• But it does on (A, B).

Expression Indexes.

• Indexes on an expression.

• PostgreSQL can recognize when you are
querying on that expression and use the
index.

• Can be expensive to create, but very fast to
execute.

• Make sure PostgreSQL is really using it!

Partial Indexes.

• An index does not have to contain all of
the rows of the table.

• The WHEN clause’s boolean predicate
limits the size of the index.

• This can be a huge performance
improvement for queries that match the
predicate, all or in part.

Indexes and MVCC

• The full key value is copied into the index.

• Every version of the tuple on the disk
appears in the index.

• Thus, PostgreSQL needs to check whether
a retrieved tuple is live.

• This means indexes can bloat as dead
tuples pile up.

GiST Indexes.

• GiST is not a single index type, but an index
framework.

• It can be used to create B-tree-style
indexes.

• It can also be used to create other index
types, like bounding-box and geometric
queries.

GiST Index Usage.

• Non-total-ordered types generally require
a GIST index.

• Each type’s index implementation decides
what operators to support.

• Inclusion, membership, intersection…

• Some GiST indexes do provide ordering.

• KNN indexes, for example.

GIN

• Generalized Inverted Index.

• Maps index items (words, dict keys) to
rows whose field contains those.

• Core PostgreSQL use: Full text search
indexes.

• Maps tokenized words to the rows
containing those words.

GIN implementation

• A B-tree of B-trees.

• Tokens organized into B-trees.

• Row pointers also organized into B-trees.

• On-disk footprint can be quite large.

• Recent versions have major optimizations
here.

“Why isn’t it using my indexes?”

• The most common complaint.

• First, get the EXPLAIN ANALYZE output of
the query.

• Sometimes, it is using the index, and it’s just
slow anyway!

Bad Selectivity.

• If PostgreSQL thinks that the index scan
will return a large percentage of the table, it
will do a seq scan instead.

• Generally, it’s right to think this.

• If it’s wrong, and the query is very
selective, try re-running ANALYZE.

ANALYZE didn’t help.

• Try running the query with:

• SET enable_seqscan = ‘off ’;

• See how long it takes to use the index
then.

• PostgreSQL might be right.

• Hey, it didn’t use the index even then!

Index Prohibitorum

• This means PostgreSQL thinks that index
doesn’t apply to this query.

• Query mis-written? Index invalid?
Confusing expression index?

• Try doing a very simple query on just that
field, and build up.

PostgreSQL is right, but wrong.

• In fact, using the index is faster even though
PostgreSQL thinks it is not.

• Try lowering random_page_cost.

• Consider changing the default statistics
target for that field.

PostgreSQL, Your Query Plan Sucks.

Bitmap Heap Scan on mytable (cost=12.04..1632.35 rows=425
width=321)
 Recheck Cond: (p_id = 543094)
 -> Bitmap Index Scan on idx_mytable_p_id
(cost=0.00..11.93 rows=425 width=0)
 Index Cond: (p_id = 543094)

What does this mean?

• First, PostgreSQL scans the index and
builds a bitmap of pages (not tuples!) that
contain candidate results.

• Then, it scans the heap (the actual
database), retrieving those pages.

• And then rechecks the condition against
the tuples on that page.

That makes no sense whatsoever.

• PostgreSQL does this when the number of
tuples to be retrieved is large.

• It can avoid doing lots of random access to
the disk.

Pure Index Scan.

Index Scan using testi on test (cost=0.00..8.27 rows=1
width=4)
 Index Cond: (whatever = 5)
(2 rows)

Index Creation.

• Two ways of creating an index:

• CREATE INDEX

• CREATE INDEX CONCURRENTLY

CREATE INDEX

• Does a single scan of the table, building the
index.

• Uses maintenance_work_mem to do the
creation.

• Keeps an exclusive lock on the table while
the index build is going on.

CREATE INDEX CONCURRENTLY

• Does two passes over the table:

• Builds the index.

• Validates the index.

• If the validation fails, the index is marked as
invalid and won’t be used.

• Drop it, run again.

REINDEX

• Rebuilds an existing index from scratch.

• Takes an exclusive lock on the table.

• Generally no need to do this unless an
index has gotten badly bloated.

Index Bloat.

• Over time, B-tree indexes can become
bloated.

• Sparse deletions from within the index
range are the usual cause.

• http://pgsql.tapoueh.org/site/html/news/
20080131.bloat.html

• Generally, don’t worry about it.

http://pgsql.tapoueh.org/site/html/news/20080131.bloat.html
http://pgsql.tapoueh.org/site/html/news/20080131.bloat.html
http://pgsql.tapoueh.org/site/html/news/20080131.bloat.html
http://pgsql.tapoueh.org/site/html/news/20080131.bloat.html

Index Usage.

• pg_stat_user_indexes

• Reports the number of times an index is
used.

• If non-constraint indexes are not being
used, drop them.

• Indexes are very expensive to maintain.

And finally…

• … don’t create indexes on columns
prospectively.

• Only create an index in response to a
particular query problem.

• It’s easy to over-index a database!

Special Situations.

Minor version upgrade.

• Do this promptly!

• Only requires installing new binaries.

• If using packages, often as easy as just an
apt-get / yum upgrade.

• Very small amount of downtime.

Major version upgrade.

• Requires a bit more planning.

• pg_upgrade is now reliable.

• Trigger-based replication is another option
for zero downtime.

• A full pg_dump / pg_restore is always
safest, if practical.

• Always read the release notes!

Don’t get caught!

• Major versions are EOLd after 5 years.

• 9.1 support ends September 2016.

• Always have a plan for how you are going
to move between major versions.

• All parts of a replication set must be
upgraded at once (for major versions).

Bulk loading data.

• Use COPY, not INSERT.

• COPY does full integrity checking and
trigger processing.

• Do a VACUUM ANALYZE afterwards.

Very high insert rates.

• Reduce shared buffers by 25%-75%.

• Reduce checkpoint timeouts to 3min or
less.

• Make sure to do enough ANALYZEs to
keep the statistics up to date, manual if
required.

AWS

• Generally, works like any other system.

• Remember that instances can disappear and
come back up without instance storage.

• Always have a good backup / replication
implementation on AWS!

• PIOPS are useful (but pricey) if you are
using EBS.

Larger-Scale AWS Deployments

• Script everything: Instance creation,
PostgreSQL setup, etc.

• Put everything inside a VPC.

• Scale up and down as required to meet
load.

• AWS is a very expensive equipment
rental service.

PostgreSQL RDS

• Overall, not a bad product.

• BIG plus: Automatic failover.

• BIG minus: Bad performance relative to
bare EC2, often mysterious.

• Other minuses: Expensive, fixed (although
large) set of extensions.

• Not a bad place to start with PostgreSQL.

Sharding.

• Eventually, you will run out of write
capacity on your master.

• Then what?

• Community PostgreSQL doesn’t have an
integrated multi-master solution.

• But there are options!

Postgres-XC

• Open-source fork of PostgreSQL.

• Intended for dedicated hardware in a single
rack.

• Node failure is still a challenge.

• Somewhat experimental, but shows great
promise.

CitusDB

• Open-source / commercial extension for
community PostgreSQL.

• Used to be a fork.

• Does columnar store data organization and
sharding.

• Not simple to use, but worth a look for
large data-warehouse type applications.

Bucardo

• Has multi-master write capability.

• Handles burst-writes effectively.

• Not great for sustained writes, since the
writes ultimately have to end up on all
machines.

Custom Sharding.

• Distribute data across multiple machines in
a way that the application can find it.

• Can shard on an arbitrary value (user ID),
or something less abstract (region).

• Application is responsible for routing to the
right database node.

• http://instagram-engineering.tumblr.com/
post/10853187575/sharding-ids-at-
instagram

http://instagram-engineering.tumblr.com/post/10853187575/sharding-ids-at-instagram
http://instagram-engineering.tumblr.com/post/10853187575/sharding-ids-at-instagram
http://instagram-engineering.tumblr.com/post/10853187575/sharding-ids-at-instagram
http://instagram-engineering.tumblr.com/post/10853187575/sharding-ids-at-instagram
http://instagram-engineering.tumblr.com/post/10853187575/sharding-ids-at-instagram
http://instagram-engineering.tumblr.com/post/10853187575/sharding-ids-at-instagram

Pooling, etc.

Why pooling?

• Opening a connection to PostgreSQL is
expensive.

• It can easily be longer than the actual query
time.

• Above 200-300 connections, use a pooler.

pgbouncer

• Developed by Skype.

• Easy to install.

• Very fast, can handle 1000s of connections.

• Does not to failover, load-balancing.

• Use HAProxy or similar.

pgPool II

• Does query analysis.

• Can route queries between master and
secondary in replication pairs.

• Can do load balancing, failover, and
secondary promotion.

• Higher overhead, more complex to
configure.

Tools

Monitor, monitor, monitor.

• Use Nagios / Ganglia to monitor:

• Disk space — at minimum.

• CPU usage

• Memory usage

• Replication lag.

• check_postgres.pl (bucardo.org)

Graphical clients

• pgAdmin III

• Comprehensive, open-source.

• Navicat

• Commercial product, not PostgreSQL-
specific.

Log Analysis

• pgbadger

• The only choice now for monitoring text
logs.

• pg_stat_statements

• Maintains a buffer of data on statements
executed, within PostgreSQL.

Bonus Round!

Query
Optimization and

Debugging

“This query is slow.”

• EXPLAIN or EXPLAIN ANALYZE

• The output is… somewhat cryptic.

• Let’s look at an example from the bottom
up.

• http://explain.depesz.com/

http://explain.depesz.com
http://explain.depesz.com

select COUNT(DISTINCT "ecommerce_order"."id") FROM
"ecommerce_order" LEFT OUTER JOIN "ecommerce_solditem" ON
("ecommerce_order"."id" = "ecommerce_solditem"."order_id") WHERE
("ecommerce_order"."subscriber_id" = 396760 AND
("ecommerce_solditem"."status" = 1 AND
("ecommerce_solditem"."user_access_denied" IS NULL OR
"ecommerce_solditem"."user_access_denied" = false) AND
"ecommerce_order"."status" IN (3,9,12,16,14)));

 QUERY PLAN
--
 Aggregate (cost=2550.42..2550.43 rows=1 width=4)
 -> Nested Loop (cost=0.00..2550.41 rows=3 width=4)
 -> Index Scan using ecommerce_order_subscriber_id
 on ecommerce_order (cost=0.00..132.88 rows=16 width=4)
 Index Cond: (subscriber_id = 396760)
 Filter: (status = ANY ('{3,9,12,16,14}'::integer[]))
 -> Index Scan using ecommerce_solditem_order_id
 on ecommerce_solditem (cost=0.00..150.86
 rows=19 width=4)
 Index Cond: (ecommerce_solditem.order_id =
 ecommerce_order.id)
 Filter: (((ecommerce_solditem.user_access_denied
 IS NULL) OR
 (NOT ecommerce_solditem.user_access_denied))
 AND (ecommerce_solditem.status = 1))

http://ecommerce_order.id/
http://ecommerce_order.id/

Query Analysis.

• Read the execution plan from the bottom
up.

• Look for nodes that are processing a lot of
data…

• … especially if the data set is being
reduced considerably on the way up.

Cost.

• Measured in arbitrary units (traditionally
have been “disk fetches”).

• First number is the startup cost for the
first tuple, second is the total cost.

• Comparable with other plans using the
same planner configuration parameters.

• Costs are inclusive of subnodes.

Actual Time.

• In milliseconds.

• Wall-clock time, not only query execution
time.

• Also presents startup time, total time.

• Also inclusive of subnodes.

Rows.

• Estimated and actual rows emitted by each
planner node.

• Not the number processed; that could be
larger, and is reflected in cost.

• A large mismatch is one of the first places
to look for query problems.

Loops.

• Number of times a subplan was executed
by its parent.

• In this case, actual times are averages, not
totals.

Types of nodes

• Assembling row sets

• Processing row sets

• Joining row sets

• And some wild animals.

Assembling row sets.

• Sequential scan

• Index scan

• Bitmap heap and index scan

Sequential scan.

• Does just what it says on the tin.

• Often the best or only way to handle a
large row set.

• Selectivity ratio is the key to understand
much about query planning:

• output rows / candidate rows.

Index scan.

• Retrieves rows by walking the index.

• Rows come out in sorted order (for a B-
tree index).

• Not efficient if the selectivity ratio is large.

• Large depends on many things, but 10%
to 30% is a good starting place.

Bitmap index scan.

• Builds an bitmap of pages (not tuples!) that
match a condition.

• Does so by scanning an index.

• Used when further upstream processing of
the row set is to be done.

Bitmap heap scan.

• Actually generates a row set out of the
bitmap.

• Must recheck any condition that was used
to create the bitmap(s).

Processing row sets.

• Sort

• Limit / Offset

• Aggregate

• HashAggregate

• Unique

• WindowAgg

• Result

• Append

• Group

• Subquery Scan
/ Subplan

• Set Operators

• Materialize

• CTE Scan

Sort.

• You can probably guess what this does.

• Can sort either in memory or on disk.

• Who understands what work_mem does?

Limit / Offset

• Implement the matching SQL constructs.

• They make no sense without sort.

• Offset works in just about the most naive
way you can possibly imagine.

• Don’t do large OFFSETs!

Aggregate

• Implements aggregate functions.

• Requires some kind of input sort.

• PostgreSQL lets you have custom aggregate
functions…

• … this implements those, too.

HashAggregate

• Hashes the input down into a reduced set
based on key(s).

• Extensively used in place of the older
processing nodes.

• Avoids having to sort the input; can be a
huge time savings.

Unique

• Takes sorted input, removes duplicates.

• Rarely seen in the wild any more.

• Largely replaced by HashAggregate.

• Still used to implement UNION.

WindowAgg

• Implements aggregates for window
functions.

• Like Aggregate, requires a sort.

Result

• Holds the result of an expression.

• Used for precalculated results, or simple
expressions that are only evaluated once.

Append

• Hm, I wonder what this does?

• Pretty much restricted to UNION ALL
these days.

Group

• Groups sorted input on a key.

• Largely replaced by HashAggregate (you
are probably noticing a theme here).

• If input is already ordered, can appear for
an encore.

Subquery Plan / Subplan

• Used to “attach” one query onto another
and pass the results up.

• Subqueries, views.

• Essentially a no-op for performance.

Set Operators

• Used to merge existing row sets.

• Uses HashSetOp, which does not require
sorted input.

• Nodes also exist for processing input
bitmaps.

Materialize

• Not about materialized views; sorry to get
your hopes up.

• Takes the input row set as a stream, and
materializes it in memory or on disk.

• Often appears when a complex subquery
input is going to be rescanned repeatedly.

CTE Scan

• Appears when Common Table Expressions
are used.

• Very much like a Subplan.

• CTEs are not inherently materialized.

• CTEs are an “optimization fence,” unlike
views.

Joining row sets.

• Nested Loop

• Merge Join

• Hash Join

• Hash semi- and anti-joins

Nested loop.

• Scans the “left” arm in order.

• For each row in the left arm, processes the
right arm.

• Which can be an index scan…

• … or a sequential scan, which is usually
bad news.

• Only way to do a cross join.

Merge join.

• Requires two sorted input sets.

• Walks through them in lock-step,
generating the output results.

• Only used for equality joins.

Hash join.

• Hashes the “right” arm of the join.

• Walks the left arm, testing against the hash
table.

• Often done for EXISTS-type queries.

• Works best when the “right” arm is of
manageable size.

Hash semi- and anti-join.

• Essentially the same algorithm as a Hash
Join…

• … but only stores required key values.

• Used for EXISTS and (especially) NOT
EXISTS.

Things that are bad.

• JOINs between two very large tables.

• Very difficult to execute efficiently unless
the sides can be reduced by a predicate.

• CROSS JOINs

• These can be created by accident!

• Sequential scans on large tables.

ANALYZE

• The planner requires good statistics to
create these plans.

• ANALYZE collects them.

• If the statistics are bad, the plans will be,
too.

 Aggregate (cost=48353.52..48353.53 rows=1 width=4)
 -> Nested Loop (cost=0.00..48353.52 rows=1 width=4)
 -> Seq Scan on ecommerce_solditem
 (cost=0.00..38883.38 rows=868 width=4)
 Filter: (((user_access_denied IS NULL) OR
 (NOT user_access_denied)) AND (status = 1))
 -> Index Scan using ecommerce_order_pkey on
 ecommerce_order (cost=0.00..10.90 rows=1 width=4)
 Index Cond: (id = ecommerce_solditem.order_id)
 Filter: ((subscriber_id = 396760) AND
 (status = ANY ('{3,9,12,16,14}'::integer[])))

 QUERY PLAN
--
 Aggregate (cost=2550.42..2550.43 rows=1 width=4)
 -> Nested Loop (cost=0.00..2550.41 rows=3 width=4)
 -> Index Scan using ecommerce_order_subscriber_id
 on ecommerce_order (cost=0.00..132.88 rows=16 width=4)
 Index Cond: (subscriber_id = 396760)
 Filter: (status = ANY ('{3,9,12,16,14}'::integer[]))
 -> Index Scan using ecommerce_solditem_order_id
 on ecommerce_solditem (cost=0.00..150.86
 rows=19 width=4)
 Index Cond: (ecommerce_solditem.order_id =
 ecommerce_order.id)
 Filter: (((ecommerce_solditem.user_access_denied
 IS NULL) OR
 (NOT ecommerce_solditem.user_access_denied))
 AND (ecommerce_solditem.status = 1))

http://ecommerce_order.id/
http://ecommerce_order.id/

Planner Statistics

• Collected as histograms on a per-column
basis.

• 100 buckets by default.

• Not restored from backup!

• Not automatically updated on major
database updates!

SELECT COUNT(*)

• Always results in a full table scan in
PostgreSQL.

• So don’t do that.

OFFSET / LIMIT

• Everyone’s favorite way of implementing
pagination.

• OK for low OFFSET values…

• … but comes apart fast for higher ones.

• GoogleBot Is Relentless.

• Precalculate, use other keys.

“The database is slow.”

• What’s going on?

• pg_stat_activity

• tail -f the logs.

• Too much I/O? iostat 5

“The database isn’t responding.”

• Make sure it’s up!

• Can you connect with psql?

• pg_stat_activity

• pg_locks

Questions?

thebuild.com / @xof / pgexperts.com

Thank you!

thebuild.com / @xof / pgexperts.com

