
© 2013 EDB All rights reserved. 1

PostgreSQL Entangled in Locks:
Attempts to free it

- Amit Kapila
- Dilip Kumar

PGCon 2017
26.05.2017

© 2017 EnterpriseDB Corporation. All rights reserved. 2

❏ Background
❏ Effects of locking on scalability
❏ Past approaches

❏ Existing issues in lock contention
❏ Read-only bottlenecks

❏ C-Hash for Buffer mapping lock
❏ Snapshot caching for ProcArrayLock

❏ Read-write Bottlenecks
❏ WAL write lock
❏ Clog control lock

Overview

© 2017 EnterpriseDB Corporation. All rights reserved. 3

❏ Locks have been a major scalability issue in
PostgreSQL.

❏ In the past a lot of work has been done to remove these
bottlenecks.
❏ Fastpath relation lock.
❏ Change locking regimen around buffer replacement.
❏ Lockless StrategyGetBuffer in clock sweep.
❏ ProcArrayLock contention removal by group commit.
❏ Buffer header spin lock to atomic operation.
❏ Hash Header Lock Contention.

Effects of locking

© 2017 EnterpriseDB Corporation. All rights reserved. 4

❏ Performance on Intel 8
socket machine (128 core)
❏ Performance Data on Commit

f58b664393dcfd02c2f57b3ff20fc0
aee6dfebf1.

❏ If data doesn’t fit in shared
buffers, performance is
falling after 64 clients.

❏ When data fits in shared
buffers, it’s falling after
128 clients.

Empirical evidence for read-only bottlenecks(1/3)

© 2017 EnterpriseDB Corporation. All rights reserved. 5

❏ Experimental Setup:
❏ Wait event test
❏ Workload: pgbench readonly
❏ Hardware: Intel 8 socket machine (128 core with HT)
❏ Scale Factor : 5000
❏ Run duration : 120 s

Empirical evidence for read-only bottlenecks(2/3)

Wait Event Count Wait Event Type Wait Event Name

39919 LWLock buffer_mapping

5119 Client ClientRead

3116 IO DataFileRead

558 Activity WalWriterMain

© 2017 EnterpriseDB Corporation. All rights reserved. 6

❏ Experimental setup:
❏ Test with perf
❏ Workload: pgbench readonly
❏ Hardware: Intel 8 socket machine (128 core with HT)
❏ Scale Factor : 300
❏ Run duration : 120 s

Empirical evidence for read-only bottlenecks(3/3)

© 2017 EnterpriseDB Corporation. All rights reserved. 7

❏ Wait event test shows that there is significant bottleneck
on the BufferMappingLock.
❏ especially when data doesn’t fit into shared buffers.

❏ There is also significant bottleneck in GetSnapshotData.
❏ Perf shows significant time spent in taking the

snapshot.

Analysis for Bottlenecks in read-only(1/3)

© 2017 EnterpriseDB Corporation. All rights reserved. 8

❏ BufferMappingLock
❏ This is used to protect the shared buffer mapping

hash table.
❏ We acquire it in exclusive lock mode to insert an

entry for the new block during buffer replacement and
in shared mode to find the existing buffer entry.

❏ This lock is partitioned for concurrency.

Analysis for Bottlenecks in read-only(2/3)

© 2017 EnterpriseDB Corporation. All rights reserved. 9

❏ GetSnapshotData
❏ In read-committed transaction isolation, we need to

take the snapshot for every query.
❏ There is an extra overhead in computing snapshot

every time.
❏ There is contention on ProcArrayLock as we compute

snapshot under that lock.

Analysis for Bottlenecks in read-only(3/3)

© 2017 EnterpriseDB Corporation. All rights reserved. 10

❏ C-Hash (Concurrent hash table) for removing buffer
mapping lock contention.

❏ Snapshot caching for reducing the overhead of
GetSnapshotData.

Experiments for reducing read-only bottleneck.

© 2017 EnterpriseDB Corporation. All rights reserved. 11

❏ Lock-free hash table which works using memory barriers and atomic
operations.

❏ Lookups are done without any locks, only memory barriers.

❏ Inserts and deletes are done using atomic ops.

❏ Delete just mark the node as deleted but doesn’t make it reusable
immediately.

❏ When a backend wishes to move entries from a garbage list to a free list, it
must first wait for any backend scanning that garbage list to complete their
scans.

C-Hash

© 2017 EnterpriseDB Corporation. All rights reserved. 12

Experimental evaluation: results(1/2)

❏ Experimental setup
❏ Pgbench read only test
❏ Scale factor 5000
❏ Shared buffers 8GB
❏ Intel 8 socket machine

© 2017 EnterpriseDB Corporation. All rights reserved. 13

❏ Experimental setup
❏ Wait Event Test on Intel 8 machine Socket.
❏ Pgbench readonly test.
❏ Scale Factor: 5000
❏ Run duration: 120s

Experimental evaluation: results(2/2)

 On Head

Event Count Event Type Event Name

39919 LWLock buffer_mapping

5119 Client ClientRead

3116 IO DataFileRead

 With C-Hash

Event Count Event Type Event Name

3102 Client ClientRead

633 IO DataFileRead

199 Activity WalWriterMain

© 2017 EnterpriseDB Corporation. All rights reserved. 14

Experimental evaluation: conclusion

❏ After C-Hash patch it’s scaling up to 128 clients and
maximum gain of > 150% at higher clients.

❏ Wait event test shows that the contention on the buffer
mapping lock is completely gone.

❏ There is 8-10% regression at one client.

© 2017 EnterpriseDB Corporation. All rights reserved. 15

❏ Calculate the snapshot once and reuse it across the
backends till it’s valid.

❏ Once the snapshot is calculated cache it into the shared
memory.

❏ Next time any backend tries to calculate the snapshot,
first check the snapshot cache.

Cache the snapshot (1/2)

© 2017 EnterpriseDB Corporation. All rights reserved. 16

❏ If a valid snapshot is available, reuse it.

❏ Otherwise, calculate the new snapshot and store it into
the cache.

❏ ProcArrayEndTransaction will invalidate the cached
snapshot.

Cache the snapshot(2/2)

© 2017 EnterpriseDB Corporation. All rights reserved. 17

❏ Experimental setup
❏ Pgbench read only test
❏ Scale factor 300
❏ Shared buffers 8GB
❏ Intel 8 socket machine

Experimental evaluation: results

© 2017 EnterpriseDB Corporation. All rights reserved. 18

❏ After the patch, it can scale up to 128 clients.

❏ Observed >40% gain at higher client counts.

❏ Perf shows significant reduction in GetSnapshotData .

Experimental evaluation: conclusion

© 2017 EnterpriseDB Corporation. All rights reserved. 19

❏ Experimental setup
❏ Test on Intel 8 socket

machine
❏ Scale factor 300
❏ Shared buffers 8GB
❏ sync_commit=on and

sync_commit=off

Empirical evidence for read-write bottlenecks(1/2)

© 2017 EnterpriseDB Corporation. All rights reserved. 20

Empirical evidence for read-write bottlenecks(2/2)

 sync_commit on

11607 IPC ProcArrayGroupUpdate

8477 LWLock WALWriteLock

7996 Client ClientRead

2671 Lock transactionid

557 LWLock wal_insert

 sync_commit off

10005 IPC ProcArrayGroupUpdate

9430 LWLock CLogControlLock

6352 Client ClientRead

5480 Lock transactionid

1368 LWLock wal_insert

❏ Wait event test at 128 clients.

© 2017 EnterpriseDB Corporation. All rights reserved. 21

❏ Wait event shows that ProcArrayGroupUpdate is on the
top.

❏ And also shows significant contentions on
WALWriteLock.

❏ With sync commit off, WALWriteLock is reduced and it
shows the next contention on ClogControlLock.

Analysis for Bottlenecks in read-write

© 2017 EnterpriseDB Corporation. All rights reserved. 22

❏ This lock is acquired to write and flush the WAL buffer
data to disk.
❏ during commit.
❏ during writing dirty buffers, if WAL is already not

flushed.
❏ periodically by WALWriter.

❏ Generally, we observe very high contention around this
lock during read-write workload.

WAL Write Lock(1/3)

© 2017 EnterpriseDB Corporation. All rights reserved. 23

❏ Experiments to find overhead

❏ Removed WAL write and flush calls.
❏ The TPS for read-write pgbench test is increased from 27871 to 45068 (at 300 scale

factor with 64 clients).

❏ Tested with fsync off.
❏ The TPS for read-write pgbench test is increased from 27871 to 41835 (at 300 scale

factor with 64 clients).

WAL Write Lock(2/3)

© 2017 EnterpriseDB Corporation. All rights reserved. 24

❏ Split WAL write and flush operations
❏ Take WAL flush calls out of WALWriteLock and perform

them under a new lock (“WALFlushLock”).

❏ This should allow simultaneous os writes when a fsync
is in progress.

❏ LWLockAcquireOrWait is used for the newly introduced
WAL Flush Lock to accumulate flush calls.

WAL Write Lock(3/3)

© 2017 EnterpriseDB Corporation. All rights reserved. 25

❏ Each proc will advertise its write location and add itself to
the pending_flush_list.

❏ The first backend that sees the list as empty (leader), will
proceed to flush the WAL for all the procs in the
pending_flush_list.

❏ The leader backend will acquire the LWLock and
traverse the pending_flush_list to find the highest write
location to flush.

Group flush the WAL(1/2)

© 2017 EnterpriseDB Corporation. All rights reserved. 26

❏ The leader backend will flush the WAL up to highest
noted write location.

❏ After flush, it wakes up all the procs for which it has
flushed the WAL.

Group flush the WAL(2/2)

© 2017 EnterpriseDB Corporation. All rights reserved. 27

❏ Experimental setup
❏ Intel 2 socket

machine (56 cores)
❏ Pgbench Read-write

test
❏ Scale factor 1000
❏ Sync_commit off
❏ Shared buffer 14GB

Experimental evaluation: results

© 2017 EnterpriseDB Corporation. All rights reserved. 28

❏ Combining both the approaches group flushing and
separating lock shows some improvement (~15-20%) at
higher client counts.

❏ Haven’t noticed a very big improvement with any of the
approaches independently.

❏ Some more tests can be performed for larger WAL
records to see the impact of combined writes.

Experimental evaluation: conclusion

© 2017 EnterpriseDB Corporation. All rights reserved. 29

❏ Wait event test shows huge contention around this lock
at high client count (>64) especially with mixed workload.

❏ This lock is acquired
❏ In exclusive mode to update the transaction status

into the CLOG.
❏ In exclusive mode to load the CLOG page into memory.
❏ In shared mode to read the transaction status from

the CLOG.

Clog Control Lock(1/2)

© 2017 EnterpriseDB Corporation. All rights reserved. 30

❏ The contention around this lock happens due to
❏ Multiple processes contends with each other when

simultaneously writing the transaction status in
the CLOG.

❏ Processes writing the transaction status in the
CLOG contends with the processes reading the
transaction status from the CLOG.

❏ Both the above contentions together lead to high
contention around CLOGControlLock in read-write
workloads.

Clog Control Lock(2/2)

© 2017 EnterpriseDB Corporation. All rights reserved. 31

❏ Solution used for ClogControlLock is similar to the
ProcArray Group Clear XID.

❏ One backend will become the group leader and that
process will be responsible for updating the transaction
status for rest of the group members.

❏ This reduces the contention on the lock significantly.

Group update the transaction status in Clog

© 2017 EnterpriseDB Corporation. All rights reserved. 32

Experimental evaluation: results(1/2)

❏ Experimental setup
❏ Pgbench Read-write

test
❏ Scale factor 300
❏ Sync_commit off
❏ Shared buffer 8GB

© 2017 EnterpriseDB Corporation. All rights reserved. 33

❏ Wait event test at 128 clients sync commit off.
Experimental evaluation: results(2/2)

 On Head

Event Count Event Type Event Name

10005 IPC ProcArrayGroupUpdate

9430 LWLock CLogControlLock

6352 Client ClientRead

5480 Lock transactionid

1368 LWLock wal_insert

 With Group update Clog

Event Count Event Type Event Name

18671 IPC ProcArrayGroupUpdate

10014 LWLock ClientRead

6115 Client transactionid

2552 Lock wal_insert

687 LWLock ProcArrayLock

© 2017 EnterpriseDB Corporation. All rights reserved. 34

❏ On the head, performance is falling after 64 clients
whereas, with the patch, it can scale up to 128 clients.

❏ ~50% performance gain at higher clients.

❏ Wait event test shows significant reduction in contention
on ClogControlLock.

Experimental evaluation: conclusion

© 2017 EnterpriseDB Corporation. All rights reserved. 35

❏ Pgbench test shows significant bottleneck exist in
BuffermappingLock at higher scale factor for read-only
workload.
❏ C-Hash shows >150% gain at higher clients.
❏ Snapshot caching shows >40% gain when data fits into

shared buffers.

❏ Read-write test show bottleneck on ProcArrayGroupUpdate,
WALWriteLock and ClogControlLock.
❏ Group flush along with taking the WAL flush calls out

of WALWriteLock shows ~20% gain.
❏ Clog group update shows ~50% gain.

Conclusion

© 2017 EnterpriseDB Corporation. All rights reserved. 36

Thank You

