cDB
ENTERPRISEDBE

PostgreSQL Entangled in Locks:
Attempts to free it

PGCon 2017
- Amit Kapila
26.05.2017 - Dilip Kumar

Overview

Background

Effects of locking on scalability
Past approaches

Existing issues in lock contention
Read-only bottlenecks
C-Hash for Buffer mapping lock
Snapshot caching for ProcArrayLock
Read-write Bottlenecks
WAL write lock
Clog control lock

© 2017 EnterpriseDB Corporation. All rights reserved. 2 ENTERPRISEDE

Effects of locking

Locks have been a major scalability issue in

PostgreSQL.
In the past a lot of work has been done to remove these

bottlenecks.
Fastpath relation lock.
Change locking regimen around buffer replacement.
Lockless StrategyGetBuffer in clock sweep.
ProcArraylLock contention removal by group commit.
Buffer header spin lock to atomic operation.
Hash Header Lock Contention.

EEEEEEEEEEEE

© 2017 EnterpriseDB Corporation. All rights reserved. 3

Empirical evidence for read-only bottlenecks(1/3)

Performance on Intel 8
socket machine (128 core)

Performance Data on Commit
f58b664393dcfd02c2£57b3££20£c0
aeebdfebfl.

If data doesn’t fit in shared
buffers, performance 1is
falling after 64 clients.

When data fits in shared
buffers, it’s falling after
128 clients.

© 2017 EnterpriseDB Corporation. All rights reserved.

350000
300000 +
250000
200000
150000
100000 -
50000

TP3

G00000
500000
400000

TPS

100000

300000 -
200000 -

FPgbench RO S.F. 5000
Data doesn't fit in Shared Buffer (8GE)

2] 3z G4 128 256
Clients

ReadOnly S.F. 300

Data fits into shared buffers

— Head
1 8 16 32 64 128 160 192
Clients
el el
ENTERPRISEDB

Empirical evidence for read-only bottlenecks(2/3)

Experimental Setup:

Wait event test
Workload: pgbench readonly

Hardware: Intel 8 socket machine (128 core with HT)
Scale Factor : 5000
Run duration : 120 s

Wait Event Count | Wait Event Type Wait Event Name
39919 LWLock buffer_mapping
5119 Client ClientRead
3116 [@) DataFileRead
558 Activity WalWriterMain
© 2017 EnterpriseDB Corporation. All rights reserved. 5 ENTERPRISEDS

Empirical evidence for read-only bottlenecks(3/3)

Experimental setup:

Test with perf

Workload: pgbench readonly

Hardware: Intel 8 socket machine (128 core with HT)
Scale Factor : 300

Run duration : 120 s

+ 18.08% 0.00% postgres lunknown] L.] 6x0000023c@BBBB23C

+ 18.08% 0.00% postgres [unknown] [.] @x@8ec834853f58948

+ 14.88% 14.55% postgres postgres [.] GetSnapshotData

+ 8.91% 0.00% postgres [unknown] [.] ex7FFFfFfff7FFFffff

+ 8.84% 8.60% postgres postgres [.] LWLockAttemptLock

+ TFid A% @.00% postgres [unknownl] [.] 000P2ERREREVCERRY

+ 6.35% 0.00% postgres [unknown] [.] 9x0000000000004011

+ 6.35% 6.16% postgres postgres [.] LWLockRelease

+ 6.21% @.00% postgres [unknown] [k] 0x0000000000030000
+ 5.96% @.23% postgres libpthread-2.17.so [.] __libc_send

& 5.17% 0.02% postgres [kernel.kallsyms] [k] system_call fastpath
+ 4.86% 4.69% postgres postgres [.] PinBuffer

+ 4.05% ©.02% postgres [k] sys_sendto

+ 4.02% ©.18% postgres [k] SYSC_sendto

+ 3.64% 9.02% postgres [k] sock_sendmsg

+ 3.44% 0.25% postgres [k] unix_stream_sendmsg
+ 2.68% 2.55% postgres [.] _bt_compare

+ 2.59% 2.53% posigres. [.] hash_search_with_hash_value
+ 2.48% @.02% postgres [kernel.kallsyms] [kl apic_timer_interrupt

© 2017 EnterpriseDB Corporation. All rights reserved. 6 ENTERPRISEDE

Analysis for Bottlenecks in read-only(1/3)

Wait event test shows that there is significant bottleneck
on the BufferMappinglLock.

especially when data doesn’t fit into shared buffers.

There is also significant bottleneck in GetSnapshotData.

Perf shows significant time spent in taking the
snapshot.

© 2017 EnterpriseDB Corporation. All rights reserved. 7 .. ENTERPRISEDE

Analysis for Bottlenecks in read-only(2/3)

BufferMappinglLock

This is used to protect the shared buffer mapping
hash table.

We acquire i1t 1n exclusive lock mode to insert an
entry for the new block during buffer replacement and
in shared mode to find the existing buffer entry.

This lock 1s partitioned for concurrency.

© 2017 EnterpriseDB Corporation. All rights reserved. 8 . ENTERPRI SEDB

Analysis for Bottlenecks in read-only(3/3)

GetSnapshotData
In read-committed transaction isolation, we need to
take the snapshot for every query.
There 1s an extra overhead in computing snapshot
every time.
There is contention on ProcArrayLock as we compute
snapshot under that lock.

© 2017 EnterpriseDB Corporation. All rights reserved. 9

Experiments for reducing read-only bottleneck.

C-Hash (Concurrent hash table) for removing buffer
mapping lock contention.

Snapshot caching for reducing the overhead of
GetSnapshotData.

© 2017 EnterpriseDB Corporation. All rights reserved. o ENTERPRISEDE

C-Hash

Lock-free hash table which works using memory barriers and atomic
operations.

Lookups are done without any locks, only memory barriers.
Inserts and deletes are done using atomic ops.

Delete just mark the node as deleted but doesn’t make it reusable
immediately.

When a backend wishes to move entries from a garbage list to a free list, it
must first wait for any backend scanning that garbage list to complete their
scans.

© 2017 EnterpriseDB Corporation. All rights reserved. "1 . ENTERPRISEDE

Experimental evaluation: results(1/2)

600000
Experimental setup 500000
Pgbench read only test
400000 -

Scale factor 5000
Shared buffers 8GB 300000 -
Intel 8 socket machine

| m—]
m C[ash

TPS

200000 -

100000 -

0 | e T T T T
1 B 32 64 128 256

Clients

© 2017 EnterpriseDB Corporation. All rights reserved. 12 ENTERPRISEDE

Experimental evaluation: results(2/2)

Experimental setup

Wait Event Test on Intel 8 machine Socket.
Pgbench readonly test.

© 2017 EnterpriseDB Corporation. All rights reserved.

Scale Factor: 5000
Run duration: 120s
On Head With C-Hash
Event Count | Event Type Event Name Event Count | Event Type Event Name
39919 LWlLock buffer_mapping 3102 Client ClientRead
5119 Client ClientRead 633 10 DataFileRead
3116 10 DataFileRead 199 Activity WalWriterMain

ENTERPRISEDE

Experimental evaluation: conclusion

After C-Hash patch it's scaling up to 128 clients and
maximum gain of > 150% at higher clients.

Wait event test shows that the contention on the buffer
mapping lock is completely gone.

There is 8-10% regression at one client.

© 2017 EnterpriseDB Corporation. All rights reserved. 14

EEEEEEEEEEEE

Cache the snapshot (1/2)

Calculate the snapshot once and reuse it across the
backends till it's valid.

Once the snapshot is calculated cache it into the shared
memory.

Next time any backend tries to calculate the snapshot,
first check the snapshot cache.

© 2017 EnterpriseDB Corporation. All rights reserved. 5 ENTERPRISEDE

Cache the snapshot(2/2)

If a valid snapshot is available, reuse it.

Otherwise, calculate the new snapshot and store it into
the cache.

ProcArrayEndTransaction will invalidate the cached
snapshot.

EEEEEEEEEEEE

© 2017 EnterpriseDB Corporation. All rights reserved. 16

Experimental evaluation: results

800000
700000 -
600000
500000

-1 Experimental setup
.l Pgbench read only test

o Scale factor 300 EM]DDDU' m— e
F 300000 s Pt
J Shared buffers 8GB :
! Intel 8 socket machine 200000 -
100000
U'.’ T T T T T T
1 8 16 a2 G4 128 160 1492

Clients

© 2017 EnterpriseDB Corporation. All rights reserved. 17 ENTERPRISEDE

Experimental evaluation: conclusion

After the patch, it can scale up to 128 clients.

Observed >40% gain at higher client counts.

Perf shows significant reduction in GetSnapshotData .

© 2017 EnterpriseDB Corporation. All rights reserved. 18

EEEEEEEEEEEE

Empirical evidence for read-write bottlenecks(1/2)

Experimental setup
Test on Intel 8 socket
machine
Scale factor 300

Shared buffers 8GB
sync_commit=on and
sync_commit=off

© 2017 EnterpriseDB Corporation. All rights reserved.

TPS

TPS

SYNC commit on

35000
30000
25000 -
20000 -
15000 -
10000 -

5000

1 8 16 32 64 128 160 192
Clients

sync commit off

45000
40000
35000 -
30000
25000
20000
15000
10000

5000 -

1 8 16 32 G4 128 160 1az 256
Client

ENTERPRISEDE

Empirical evidence for read-write bottlenecks(2/2)

Wait event test at 128 clients.

sync_commit on sync_commit off
11607 IPC ProcArrayGroupUpdate 10005 IPC ProcArrayGroupUpdate
8477 LWLock WALWriteLock 9430 LWLock CLogControlLock
7996 Client ClientRead 6352 Client ClientRead
2671 Lock transactionid 5480 Lock transactionid
557 LWLock wal_insert 1368 LWLock wal_insert

© 2017 EnterpriseDB Corporation. All rights reserved. 20 ENTERPRISEDB

Analysis for Bottlenecks in read-write

Wait event shows that ProcArrayGroupUpdate is on the
top.

And also shows significant contentions on
WALWriteLock.

With sync commit off, WALWriteLock is reduced and it
shows the next contention on ClogControlLock.

© 2017 EnterpriseDB Corporation. All rights reserved. 2 ENTERPRISEDE

WAL Werite Lock(1/3)

This lock is acquired to write and flush the WAL buffer
data to disk.

during commit.

during writing dirty buffers, i1f WAL is already not
flushed.

periodically by WALWriter.

Generally, we observe very high contention around this
lock during read-write workload.

© 2017 EnterpriseDB Corporation. All rights reserved. 2 ... ENTERPRISEDE

WAL Werite Lock(2/3)
Experiments to find overhead

Removed WAL write and flush calls.

The TPS for read-write pgbench test is increased from 27871 to 45068 (at 300 scale
factor with 64 clients).

Tested with fsync off.

The TPS for read-write pgbench test is increased from 27871 to 41835 (at 300 scale
factor with 64 clients).

© 2017 EnterpriseDB Corporation. All rights reserved. 23 ENTERPRISEDE

WAL Werite Lock(3/3)

Split WAL write and flush operations
Take WAL flush calls out of WALWriteLock and perform
them under a new lock (“WALFlushLock”).

This should allow simultaneous os writes when a fsync
1s 1n progress.

LWLockAcquireOrWait 1s used for the newly introduced
WAL Flush Lock to accumulate flush calls.

© 2017 EnterpriseDB Corporation. All rights reserved. 24 . ENTERPRI SEDB

Group flush the WAL(1/2)

Each proc will advertise its write location and add itself to
the pending_flush_list.

The first backend that sees the list as empty (leader), will
proceed to flush the WAL for all the procs in the
pending_flush_list.

The leader backend will acquire the LWLock and
traverse the pending_flush_list to find the highest write
location to flush.

EEEEEEEEEEEE

© 2017 EnterpriseDB Corporation. All rights reserve d. 25

Group flush the WAL(2/2)

The leader backend will flush the WAL up to highest
noted write location.

After flush, it wakes up all the procs for which it has
flushed the WAL.

© 2017 EnterpriseDB Corporation. All rights reserved. 6 . ENTERPRISEDE

Experimental evaluation: results

Experimental setup

Intel 2 socket ﬁEﬁ S
machine (56 cores) 35000 -
PgbenCh Read-write 30000 - _—
test 25000 - ———
Scale factor 1000 20000 - | Patch
Sync _commit off 15000
Shared buffer 14GB 10000 -

5000

[]: .

1 : 16 32 64 128

© 2017 EnterpriseDB Corporation. All rights reserved. 27 ENTERPRISEDB

Experimental evaluation: conclusion

Combining both the approaches group flushing and
separating lock shows some improvement (~15-20%) at
higher client counts.

Haven’t noticed a very big improvement with any of the
approaches independently.

Some more tests can be performed for larger WAL
records to see the impact of combined writes.

© 2017 EnterpriseDB Corporation. All rights reserved. 2 . ENTERPRISEDE

Clog Control Lock(1/2)

Wait event test shows huge contention around this lock
at high client count (>64) especially with mixed workload.

This lock is acquired
In exclusive mode to update the transaction status
into the CLOG.
In exclusive mode to load the CLOG page 1nto memory.
In shared mode to read the transaction status from
the CLOG.

© 2017 EnterpriseDB Corporation. All rights reserved. 2 . ENTERPRISEDE

Clog Control Lock(2/2)

The contention around this lock happens due to

Multiple processes contends with each other when
simultaneously writing the transaction status 1in
the CLOG.

Processes writing the transaction status in the
CLOG contends with the processes reading the
transaction status from the CLOG.

Both the above contentions together lead to high
contention around CLOGControlLock in read-write
workloads.

ENTERPRISEDE

© 2017 EnterpriseDB Corporation. All rights reserved. 30

Group update the transaction status in Clog

Solution used for ClogControlLock is similar to the
ProcArray Group Clear XID.

One backend will become the group leader and that
process will be responsible for updating the transaction
status for rest of the group members.

This reduces the contention on the lock significantly.

© 2017 EnterpriseDB Corporation. All rights reserved. . ENTERPRISEDE

Experimental evaluation: results(1/2)

60000

Experimental setup
Pgbench Read-write

50000

40000 -

test

Scale factor 300 2 e

Sync commit off 20000 -

Shared buffer 8GB igsiE
0 ? ! | : : | . |
1 8 16 32 64 128 160 192

Clients

© 2017 EnterpriseDB Corporation. All rights reserved. 32 ENTERPRISEDB

Experimental evaluation: results(2/2)
Wait event test at 128 clients sync commit off.

© 2017 EnterpriseDB Corporation. All rights reserved.

On Head With Group update Clog
Event Count | Event Type | Event Name Event Count | Event Type | Event Name
10005 IPC ProcArrayGroupUpdate 18671 IPC ProcArrayGroupUpdate
9430 LWl ock CLogControllLock 10014 LWLock ClientRead
6352 Client ClientRead 6115 Client transactionid
5480 Lock transactionid 2552 Lock wal_insert
1368 LWLock wal_insert 687 LWLock ProcArraylLock

ENTERPRISEDE

Experimental evaluation: conclusion

On the head, performance is falling after 64 clients
whereas, with the patch, it can scale up to 128 clients.

~50% performance gain at higher clients.

Wait event test shows significant reduction in contention
on ClogControlLock.

© 2017 EnterpriseDB Corporation. All rights reserved. 4 . ENTERPRISEDE

Conclusion

Pgbench test shows significant bottleneck exist in
BuffermappingLock at higher scale factor for read-only
workload.

C-Hash shows >150% gain at higher clients.

Snapshot caching shows >40% gain when data fits into
shared buffers.

Read-write test show bottleneck on ProcArrayGroupUpdate,
WALWriteLock and ClogControlLock.

Group flush along with taking the WAL flush calls out
of WALWriteLock shows ~20% gain.

Clog group update shows ~50% gain.

© 2017 EnterpriseDB Corporation. All rights reserved. 3% . ENTERPRISEDE

Thank You

© 2017 EnterpriseDB Corporation. All rights reserved. 36 ENTERPRISEDB

