
PostgreSQL
when it’s not your job.

Christophe Pettus
PostgreSQL Experts, Inc.  

PGCon 2017

Welcome!

• Christophe Pettus

• CEO of PostgreSQL Experts, Inc.

• Based in sunny Alameda, California.

• Technical blog: thebuild.com

• Twitter: @xof

• christophe.pettus@pgexperts.com

mailto:christophe.pettus@pgexperts.com

What is this?

• “Just enough” PostgreSQL for a developer.

• PostgreSQL is a rich environment.

• Far too much to learn in a single tutorial.

• But enough to be dangerous!

The DevOps World

• “Integration between development and
operations.”

• “Cross-functional skill sharing.”

• “Maximum automation of development and
deployment processes.”

• “We’re way too cheap to hire real
operations staff. Anyway: Cloud!”

This means…

• No experienced DBA on staff.

• Have you seen how much those people
cost, anyway?

• Development staff pressed into duty as
database administrators.

• But it’s OK… it’s PostgreSQL!

Everyone Loves PostgreSQL!

• Fully ACID-compliant relational database
management system.

• Richest set of features of any modern
production RDMS.

• Relentless focus on quality, security, and
spec compliance.

• Capable of very high performance.

PostgreSQL Can Do It.

• Tens of thousands of transactions per
second.

• Enormous databases (into the petabyte
range).

• Supported by pretty much any application
stack you can imagine.

Cross-Platform.

• Operates natively on all modern operating
systems.

• Plus Windows.

• Scales from development laptops to huge
enterprise clusters.

ASK QUESTIONS.

Installation

If you have packages…

• … use them!

• Provides platform-specific scripting, etc.

• RedHat-flavor and Debian-flavor have their
own repositories.

• Other OSes have a variety of packaging
systems.

If you use packages…

• … get them from the community-
maintained repos.

• Distros sometimes have older versions.

• apt.postgresql.org for Debian-derived.

• yum.postgresql.org for RedHat-derived.

Or you can build from source.

• Works on any platform.

• Maximum control.

• Requires development tools.

• Does not come with platform-specific
utility scripts (/etc/init.d, etc.).

• A few (very rare) config options require
rebuilding.

Other OSes.

• Windows: One-click installer available.

• OS X: One-click installer, MacPorts, Fink
and Postgres.app from Heroku.

• For other OSes, check postgresql.org.

Creating a database cluster.

• A single PostgreSQL server can manage
multiple databases.

• The whole group on a single server is
called a “cluster”.

• This is very confusing, yes. We’ll use the
term “server” here.

initdb

• The command to create a new database is
called initdb.

• It creates the files that will hold the
database.

• It doesn’t automatically start the server.

• Many packaging systems automatically
create and start the server for you.

Note on Debian/Ubuntu

• Debian-style packaging has a sophisticated
cluster management system.

• Use it! It will make your life much easier.

• pg_createcluster instead of initdb

Just Do This.

• Always create databases as UTF-8.

• Once created, cannot be changed.

• Converting from “SQL ASCII” to a real
encoding is a total nightmare.

• Use your favorite locale, but not “C locale.”

• UTF-8 and system locale are the defaults.

Checksums.

• Introduced in 9.3.

• Maintains a checksum for data pages.

• Very small performance hit. Use it.

• initdb option.

• Can add in /etc/postgresql-common/
createcluster.conf for Debian packaging.

Examples

• Using initdb:

•initdb -D /data/9.5/ -k -E UTF8 \  
--locale=en_US.UTF-8

• Using pg_createcluster:

•pg_createcluster 9.5 main -D /data/9.5/main \ 
-E UTF8 --locale=en_US.UTF-8 -- -k

Other Important Things.

• Create a separate database volume /
partition for data.

• Do not put the version number in the
mountpoint (/data, not /data/9.5).

• EXT4 or XFS for the filesystem (ZFS is
extra for experts).

pg_ctl

• Built-in command to start and stop
PostgreSQL.

• Frequently called by init.d, upstart or other
scripts.

• Use the package-provided scripts if they
exist; they do the right thing.

Stopping PostgreSQL.

• Three “shutdown modes”: smart, fast,
immediate. -m option on pg_ctl

• Don’t use smart. It’s not really that smart.

• Use fast (cancels queries, does shutdown).

• Use immediate if required.

• immediate crashes PostgreSQL!

psql

• Command-line interface to PostgreSQL.

• Run queries, examine the schema, look at
PostgreSQL’s various views.

• Get friendly with it! It’s very useful for
doing quick checks.

PostgreSQL directories

• All of the data lives under a top-level
directory.

• Let’s call it $PGDATA.

• Find it on your system, and do a ls.

• The data lives in “base”.

• The transaction logs live in pg_xlog.

NEVER EVER TOUCH THESE THINGS!

• The contents of subdirectories and special
files in $PGDATA should never, ever be
modified directly. Ever.

• Exceptions: pg_log (if you put the log files
there), and the configuration files.

• pg_xlog and pg_clog are off-limits!

Tablespaces

• A quick note on tablespaces.

• Don’t use them.

• Extra for experts: Use them if you have
unusual storage configuration, but they will
make your life more complex.

• NEVER put the tablespace storage inside
$PGDATA.

Configuration files.

• On most installations, the configuration
files live in $PGDATA.

• On Debian-derived systems, they live in  
/etc/postgresql/9.6/main/...

• Find them. You should see:

• postgresql.conf

• pg_hba.conf

Configuration

Configuration files.

• Only two really matter:

• postgresql.conf — most server settings.

• pg_hba.conf — who gets to log in to
what databases?

postgresql.conf

• Holds all of the configuration parameters
for the server.

• Find it and open it up on your system.

We’re All Going To Die.

It Can Be Like This.

Important parameters.

• Logging.

• Memory.

• Checkpoints.

• Planner.

• You’re done.

• No, really, you’re done!

Logging.

• Be generous with logging; it’s very low-
impact on the system.

• It’s your best source of information for
finding performance problems.

Where to log?

• syslog — If you have a syslog infrastructure
you like already.

• Otherwise, CSV format to files.

• “Standard format” or “stderr” is obsolete.
There is no good reason to use it anymore.

What to log?

log_destination = 'csvlog'
log_directory = 'pg_log'
logging_collector = on
log_filename = 'postgres-%Y-%m-%d_%H%M%S'
log_rotation_age = 1d
log_rotation_size = 1GB
log_min_duration_statement = 250ms
log_checkpoints = on
log_connections = on
log_disconnections = on
log_lock_waits = on
log_temp_files = 0

Memory configuration

• shared_buffers

• work_mem

• maintenance_work_mem

shared_buffers

• Below 2GB (?), set to 20% of total system
memory.

• Below 64GB, set to 25% of total system
memory.

• Above 64GB (lucky you!), set to 16GB.

• Done.

work_mem

• Start low: 32-64MB.

• Look for ‘temporary file’ lines in logs.

• Set to 2-3x the largest temp file you see.

• Can cause a huge speed-up if set properly!

• But be careful: It can use that amount of
memory per planner node.

maintenance_work_mem

• 10% of system memory, up to1GB.

• Maybe even higher if you are having
VACUUM problems.

• (We’ll talk about VACUUM later.)

effective_cache_size

• Set to the amount of file system cache
available.

• If you don’t know, set it to 75% of total
system memory.

• And you’re done with memory settings.

Checkpoints.

• A complete flush of dirty buffers to disk.

• Potentially a lot of I/O.

• Done when the first of two thresholds are
hit:

• A particular number of WAL segments
have been written.

• A timeout occurs.

Checkpoint settings, 9.4 and earlier.

wal_buffers = 16MB

checkpoint_completion_target = 0.9

checkpoint_timeout = 10m-30m # Depends on restart time

checkpoint_segments = 32 # To start.

Checkpoint settings, 9.5 and later.

wal_buffers = 16MB

checkpoint_completion_target = 0.9

checkpoint_timeout = 10m-30m # Depends on restart time

min_wal_size = 512MB

max_wal_size = 2GB

Checkpoint settings, 9.4 and earlier.

• Look for checkpoint entries in the logs.

• Happening more often than
checkpoint_timeout?

• Adjust checkpoint_segments so that
checkpoints happen due to timeouts
rather filling segments.

• And you’re done with checkpoint settings.

Checkpoint settings, 9.5 and later

• Look for checkpoint entries in the logs.

• Happening more often than
checkpoint_timeout?

• Step 1: Adjust min_wal_size so that
checkpoints happen due to timeouts rather
filling segments.

• More will improve performance.

Checkpoint settings, 9.5 and later

• Step 2: Adjust max_wal_size to be about
three times min_wal_size.

• More will improve performance.

• And you’re done with checkpoint settings.

Checkpoint settings notes.

• Pre-9.5, the WAL can take up to 3 x 16MB
x checkpoint_segments on disk.

• 9.5+, the WAL varies between
min_wal_size and max_wal_size.

• Restarting PostgreSQL from a crash can
take up to checkpoint_timeout (but usually
much less).

Planner settings.

• effective_io_concurrency — Set to the
number of I/O channels; otherwise, ignore
it.

• random_page_cost — 3.0 for a typical
RAID10 array, 2.0 for a SAN, 1.1 for
Amazon EBS.

• And you’re done with planner settings.

Do not touch.

• fsync = on

• Never change this.

• synchronous_commit = on

• Change this, but only if you understand
the data loss potential.

Changing settings.

• Most settings just require a server reload
to take effect.

• Some require a full server restart (such as
shared_buffers).

• Many can be set on a per-session basis!

pg_hba.conf

Users and roles.

• A “role” is a database object that can own
other objects (tables, etc.), and that has
privileges (able to write to a table).

• A “user” is just a role that can log into the
system; otherwise, they’re synonyms.

• PostgreSQL’s security system is based
around users.

Basic user management.

• Don’t use the “postgres” superuser for
anything application-related.

• Sadly, you probably will have to grant
schema-modifications privileges to your
application user, if you use migrations.

• If you don’t have to, don’t.

User security.

• By default, database traffic is not encrypted.

• Turn on ssl if you are running in a cloud
provider.

• For pre-9.4, set ssl_renegotiation_limit = 0.

pg_hba.conf basics.

• Don't ever expose port 5432 to the public
internet.

• Don't ever use trust authentication.

• On a cloud hosting environment, use SSL
always.

The WAL.

Why are we talking about this now?

• The Write-Ahead Log is key to many
PostgreSQL operations.

• Replication, crash recovery, etc., etc.

• Don’t worry (too much!) about the
internals.

The Basics.

• When each transaction is committed, it is
logged to the write-ahead log.

• The changes in that transaction are flushed
to disk.

• If the system crashes, the WAL is “replayed”
to bring the database to a consistent state.

A continuous record of changes.

• The WAL is a continuous record of changes
since the last checkpoint.

• Thus, if you have the disk image of the
database, and every WAL record since that
was created…

• … you can recreate the database to the
end of the WAL.

pg_xlog

• The WAL is stored in 16MB segments in
the pg_xlog directory.

• Don’t mess with it! Never delete anything
out of it!

• Records are automatically recycled when
they are no longer required.

On a crash…

• When PostgreSQL restarts, it replays the
WAL log to bring itself back to a consistent
state.

• The WAL segments are essential to proper
crash recovery.

• The longer since the last checkpoint, the
more WAL it has to process.

sychronous_commit

• When “on”, COMMIT does not return until
the WAL flush is done.

• When “off”, COMMIT returns when the
WAL flush is queued.

• Thus, you might lose transactions on a
crash.

• No danger of database corruption.

Backup and
Recovery

pg_dump

• Built-in dump/restore tool.

• Takes a logical snapshot of the database.

• Does not lock the database or prevent
writes to disk.

• Low (but not zero) load on the database.

pg_restore

• Restores database from a pg_dump.

• Is not a fast operation.

• Great for simple backups, not suitable for
fast recovery from major failures.

pg_dump / pg_restore advice

• Back up globals with pg_dumpall --globals-
only.

• Back up each database with pg_dump using
--format=custom.

• This allows for a parallel restore using
pg_restore.

pg_restore

• Restore using --jobs=<# of cores + 1>.

• Most of the time in a restore is spent
rebuilding indexes; this will parallelize that
operation.

• Restores are not fast.

PITR backup / recovery

• Remember the WAL?

• If you take a snapshot of the data
directory…

• … it won’t be consistent, but if we add the
WAL records…

• … we can bring it back to consistency.

WAL archiving.

• archive_command

• Runs a command each time a WAL
segment is complete.

• This command can do whatever you want.

• What you want is to move the WAL
segment to someplace safe…

• … on a different system.

Getting started with PITR.

• Decide where the WAL segments and the
backups will live.

• Configure archive_command properly to
do the copying.

• Always use rsync (or a dedicated tool) to
do the copy, not scp.

Creating a PITR backup.

• SELECT pg_start_backup(...);

• Copy the disk image and any WAL files that
are created.

• SELECT pg_stop_backup();

• Make sure you have all the WAL segments.

• The disk image + WAL segments are your
backup.

WAL-E

• http://github.com/wal-e/wal-e

• Provides a full set of appropriate scripting.

• Automates create PITR backups into AWS
S3.

• Highly recommended!

http://github.com/wal-e/wal-e

PITR Restore

• Copy the disk image back to where you
need it.

• Set up recovery.conf to point to where the
WAL files are.

• Start up PostgreSQL, and let it recover.

How long will this take?

• The more WAL files, the longer it will take.

• Generally takes 10-20% of the time it took
to create the WAL files in the first place.

• More frequent snapshots = faster recovery
time.

“PITR”?

• Point-in-time recovery.

• You don’t have to replay the entire WAL
stream.

• It can be stopped at a particular timestamp,
or transaction ID.

• Very handy for application-level problems!

Disaster recovery.

• Always have a disaster recovery strategy.

• What if you data center / AWS region goes
down?

• Have a plan for recovery from a remote
site.

• WAL archiving is a great way to handle this.

pg_basebackup

• Utility for doing a snapshot of a running
server.

• Easiest way to take a snapshot to start a
new secondary.

• Can also be used as an archival backup.

Backup Notes.

• Always test your backups. Always, always,
always.

• Give them to developers to prime their
dev systems.

• Do not backup to mounted network (NFS,
etc.) shares.

Packaged Solutions

• WAL-E

• repmgr

• barman

• backrest

• Use a packaged solution; don't roll your
own unless you must.

Replication!

Replication.

• If you are serious about your data, you
need a replica.

• In general, you want binary replication, at
least to start.

• But there are other kinds of PostgreSQL
replication.

Hmm… what if we…

• … transmitted the WAL changes directly to
the secondary without having to ship the
file?

• Great idea!

• Such a great idea, PostgreSQL implements
it!

• That’s what Binary Replication is.

Binary Replication Basics.

• The secondary connects via a standard
PostgreSQL connection to the primary.

• As changes happen on the primary, they are
sent down to the secondary.

• The secondary applies them to its local
copy of the database.

recovery.conf

• All replication is orchestrated through the
recovery.conf file.

• Always lives in your $PGDATA directory.

• Controls how to connect to the primary,
how far to recover (for PITR), etc., etc.

• Also used if you are bringing the server up
as a PITR recovery instead of replication.

Binary Replication, the good.

• Easy to set up.

• Schema changes are automatically
replicated.

• Secondary can be used to handle read-only
queries for load balancing.

• Very few gotchas; it either works or it
doesn’t, and it is vocal about not working.

Binary Replication, the bad.

• Entire database or none of it.

• No writes of any kind to the secondary.

• This includes temporary tables.

• Some things aren’t replicated.

• Temporary tables, unlogged tables, hash
indexes.

Advice?

• Start with WAL-E.

• The README tells you everything you
need to know.

• Handles a very large number of complex
replication problems easily.

• As you scale out of it, you’ll have the
relevant experience.

Trigger-based replication

• Installs triggers on tables on master.

• A daemon process picks up the changes
and applies them to the secondaries.

• Third-party add-ons to PostgreSQL.

Trigger-based rep: Good.

• Highly configurable.

• Can push part or all of the tables; don’t
have to replicate everything.

• Multi-master setups possible (Bucardo).

Trigger-based rep: The bad.

• Fiddly and complex to set up.

• Schema changes must be pushed out
manually.

• Imposes overhead on the master.

Built-In Logical Replication

• Brand new as of 9.4.

• Decodes the WAL stream back into SQL
level changes.

• Plug-ins decode the changes.

• Ships with (and RDS supports) a toy demo
plug-in.

pg_logical

• Builds PostgreSQL-to-PostgreSQL logical
replication on top of logical decoding.

• Functional, flexible.

• Not part of the core distribution, and does
impose some limitations on operations.

Coming in Version 10!

• In-core logical replication!

• Roughly equivalent to pg_logical, but some
significant differences and limitations.

Transactions,
MVCC and
VACUUM

“Transaction”

• A unit of which which must be:

• Applied atomically to the database.

• Invisible to other database clients until it
is committed.

The Classic Example.

BEGIN;
INSERT INTO transactions(account_id, value, offset_id)
 VALUES (11, 120.00, 14);
INSERT INTO transactions(account_id, value, offset_id)
 VALUES (14, -120.00, 11);
COMMIT;

Transaction Properties.

• Once the COMMIT completes, the data has
been written to permanent storage.

• If a database crash occurs, any transactions
will be COMMITed or not; no half-done
transactions.

• No transaction can (directly) see another
transaction in progress.

In PostgreSQL…

• Everything runs inside of a transaction.

• If no explicit transaction, each statement is
wrapped in one for you.

• This has certain consequences for
database-modifying functions.

• Everything that modifies the database is
transactional, even schema changes.

A brief warning…

• Many resources are held until the end of a
transaction.

• Temporary tables, working memory,
locks, etc.

• Keep transactions brief and to the point.

• Be aware of IDLE IN TRANSACTION
sessions.

Transaction would be easy…

• … if databases were single user.

• They’re not.

• Thank goodness.

• So, how do we handle concurrency control
when two sessions are trying to use the
same data?

The Problem.

• Process 1 begins a transaction.

• Process 2 begins a transaction.

• Process 1 updates a tuple.

• Process 2 tries to read that tuple.

• What happens?

Bad Things.

• Process 2 can’t get the new version of the
tuple (ACID [generally] prohibits dirty
reads).

• But where does it get the old version of
the tuple from?

• Memory? Disk? Special roll-back area?

• What if we touch 250,000,000 rows?

Some Approaches.

• Lock the whole database.

• Lock the whole table.

• Lock that particular tuple.

• Reconstruct the old state from a rollback
area.

• None of these are particularly satisfactory.

Multi-Version Concurrency Control.

• Create multiple “versions” of the database.

• Each transaction sees its own “version.”

• We call these “snapshots” in PostgreSQL.

• Each snapshot is a first-class member of the
database.

• There is no privileged “real” snapshot.

The Implications.

• Readers do not block readers.

• Readers do not block writers.

• Writers do not block readers.

• Writers only block writers to the same
tuple.

Snapshots.

• Each transaction maintains its own
snapshot of the database.

• This snapshot is created when a statement
or transaction starts (depending on the
transaction isolation mode).

• The client only sees the changes in its own
snapshot.

Nothing’s Perfect.

• PostgreSQL will not allow two snapshots
to “fork” the database.

• If this happens, it resolves the conflict with
locking or with an error, depending on the
isolation mode.

• Example: Two separate clients attempt to
update the same tuple.

Isolation Modes.

• PostgreSQL supports:

• READ COMMITTED — The default.

• REPEATABLE READ

• SERIALIZABLE

• It does not support:

• READ UNCOMMITTED (“dirty read”)

Higher isolation modes.

• REPEATABLE READ and SERIALIZABLE
take the snapshot when the transaction
begins.

• Snapshot lasts until the end.

• An attempt to modify a tuple another
transaction has changed blocks…

• … and returns an error if that
transaction commits.

MVCC consequences.

• Deleted tuples are not (usually)
immediately freed.

• Tuples on disk might not be available to
be readily checked.

• This results in dead tuples in the database.

• Which means: VACUUM!

VACUUM

• VACUUM’s primary job is to scavenge
tuples that are no longer visible to any
transaction.

• They are returned to the free space for
reuse.

• autovacuum generally handles this problem
for you without intervention.

ANALYZE

• The planner requires statistics on each
table to make good guesses for how to
execute queries.

• ANALYZE collects these statistics.

• Done as part of VACUUM.

• Always do it after major database changes
— especially a restore from a backup.

“Vacuum’s not working.”

• It probably is.

• The database generally stabilize at 20% to
50% bloat. That’s acceptable.

• If you see autovacuum workers running,
that’s generally not a problem.

“No, really, VACUUMs not working!”

• Long-running transactions, or “idle-in-
transaction” sessions?

• Manual table locking?

• Very high write-rate tables?

• Many, many tables (10,000+)?

Unclogging the VACUUM.

• Reduce the autovacuum sleep time.

• Increase the number of autovacuum
workers.

• Do low period manual VACUUMs.

• Fix IIT sessions, long transactions, manual
locking.

Excessive VACUUM Load.

• “It’s never twins, it’s never lupus, and it’s
never autovacuum.”

• Autovacuum is rarely the culprit.

• Diagnosis: Turn off autovacuum
(temporarily! never permanently!) to see if
that unloads the I/O subsystem.

Adjusting Vacuum.

• The first and safest way to “lighten”
autovacuum is to reduce
autovacuum_vacuum_cost_delay.

• Default 20ms, start by turning down to
100ms.

VACUUM FREEZE

• Details are tedious, but:

• A periodic “major” vacuum that
PostgreSQL must perform to prevent
transaction ID wraparound.

• Generally, not a problem, but for high-
update rate, large databases, can be a I/O
issue.

Avoiding VACUUM FREEZE problems.

• Do a manual VACUUM FREEZE at low-load
periods.

• Every 1-4 months depending on transaction
load.

• Can use the built-in vacuumdb tool:

•vacuumdb --all --freeze --analyze

Or, upgrade to 9.6!

• Significant improvements in VACUUM
FREEZE in 9.6.

• Upgrade if you possibly can.

Schema Design
Notes.

A grab-bag of notes.

• Schema design is a deep topic.

• This is just a quick set of random important
things.

NULL

• NULL is a total pain in the neck.

• Sometimes, you have to deal with NULL,
but:

• Only use it to mean “missing value.”

• Never, ever have it as a meaningful value in
a key field.

• WHERE NOT IN (SELECT ...)

JSON.

• It’s a core type.

• Not a contrib/ or extension module.

• Introduced in 9.2.

• Enhanced in 9.3.

• And really enhanced in 9.4.

We liked JSON so much…

• … we created two types.

• json

• jsonb

• json is a pure text representation.

• jsonb is a parsed binary representation.

• Each can be cast to the other, of course.

json type.

• Stores the actual json text.

• Whitespace included.

• What you get out is what you put in.

• Checked for correctness, but not
otherwise processed.

Why use json?

• You are storing the json and never
processing it.

• You need to support two JSON “features”:

• Order-preserved fields in objects.

• Duplicate keys in objects.

• For some reason, you need the exact JSON
text back out.

Oh, and…

• jsonb wasn’t introduced until 9.4.

• So, if you are on 9.2-9.3, json is what you’ve
got.

• Otherwise, you want to use jsonb.

jsonb

• Parsed and encoded on the way in.

• Stored in a compact, parsed format.

• Considerably more operator and function
support.

• Has indexing support.

Very Large Objects

• Let’s say 1MB or more.

• Store them in files, store metadata in the
database.

• The database API is not designed for
passing large objects around.

Many-to-Many Tables

• These can get extremely large.

• Consider replacing with array fields.

• Either one way, or both directions.

• Can use a trigger to maintain integrity.

• Much smaller and more efficient.

• Depends, of course, on usage model.

Character Encoding.

• Use UTF-8.

• Just. Do. It.

• There is no compelling reason to use any
other character encoding.

• One edge case: the bottleneck is sorting
text strings. This is very, very rare.

Time Representation.

• Always use TIMESTAMPTZ.

• TIMESTAMP is a bad idea.

• TIMESTAMPTZ is “timestamp, converted to
UTC.”

• TIMESTAMP is “timestamp, at some time
zone but we don’t know which one, hope
you do.”

Indexing

Test your database
knowledge!

What does the SQL standard require for indexes?

Trick Question!

It doesn’t.

• The database should work identically
whether or not you have indexes.

• Of course, “identically” in this case does
not mean “just as fast.”

• No real-life database can work properly
without indexes.

PostgreSQL Index Types.

• B-Tree.

• Hash.

• GiST.

• SP-GiST.

• GIN.

B-Tree Indexes.

• The standard PostgreSQL index is a B-tree.

• Provides O(log N) access to leaf notes.

• Provides total ordering.

• Operates on scalar values that implement
standard comparison operators.

B-Tree Index Types.

• Single column.

• Multiple column (composite).

• Expression (“functional”) indexes.

Single Column B-Trees

• The simplest index type.

• Can be used to optimize searches on <, <=,
=, >=, >.

• Can be used to retrieve rows in sorted
order on that column.

When to create?

• If a query uses that column, and…

• … uses one of the comparison
operators.

• … and selects <10-15% of the rows.

• … and is run frequently.

• … the index will likely be helpful.

Indexes and JOINs

• Indexes can accelerate JOINs considerably.

• But the usual rules apply.

• Generally, they help the most when
indexing the key on the larger table and…

• … that results in high selectivity against the
smaller table.

Indexes and Aggregates.

• Some GROUP BY and related operations
can benefit from an index.

• Often only in the presence of a HAVING
clause, though.

• If it has to scan the whole index, it might as
well scan the whole table.

Mandatory indexes.

• Constraints must have indexes to enforce
them.

• Just accept those.

Ascending vs Descending?

• By default, B-trees index in ascending order.

• Descending indexes are much faster in
retrieving tuples in descending order.

• So, if the primary function is descending
sortation, use that.

• Otherwise, just use ascending order.

Composite Indexes.

• A single index can have multiple columns.

• The columns must be used left-to-right.

• An index on (A, B, C) does not help a
query on just C.

• But it does on (A, B).

Expression Indexes.

• Indexes on an expression.

• PostgreSQL can recognize when you are
querying on that expression and use the
index.

• Can be expensive to create, but very fast to
execute.

• Make sure PostgreSQL is really using it!

Partial Indexes.

• An index does not have to contain all of
the rows of the table.

• The WHEN clause’s boolean predicate
limits the size of the index.

• This can be a huge performance
improvement for queries that match the
predicate, all or in part.

Indexes and MVCC

• The full key value is copied into the index.

• Every version of the tuple on the disk
appears in the index.

• Thus, PostgreSQL needs to check whether
a retrieved tuple is live.

• This means indexes can bloat as dead
tuples pile up.

GiST Indexes.

• GiST is not a single index type, but an index
framework.

• It can be used to create B-tree-style
indexes.

• It can also be used to create other index
types, like bounding-box and geometric
queries.

GiST Index Usage.

• Non-total-ordered types generally require
a GIST index.

• Each type’s index implementation decides
what operators to support.

• Inclusion, membership, intersection…

• Some GiST indexes do provide ordering.

• KNN indexes, for example.

GIN

• Generalized Inverted Index.

• Maps index items (words, dict keys) to
rows whose field contains those.

• Core PostgreSQL use: Full text search
indexes.

• Maps tokenized words to the rows
containing those words.

GIN implementation

• A B-tree of B-trees.

• Tokens organized into B-trees.

• Row pointers also organized into B-trees.

• On-disk footprint can be quite large.

• Recent versions have major optimizations
here.

“Why isn’t it using my indexes?”

• The most common complaint.

• First, get the EXPLAIN ANALYZE output of
the query.

• Sometimes, it is using the index, and it’s just
slow anyway!

Bad Selectivity.

• If PostgreSQL thinks that the index scan
will return a large percentage of the table, it
will do a seq scan instead.

• Generally, it’s right to think this.

• If it’s wrong, and the query is very selective,
try re-running ANALYZE.

ANALYZE didn’t help.

• Try running the query with:

• SET enable_seqscan = ‘off ’;

• See how long it takes to use the index
then.

• PostgreSQL might be right.

• Hey, it didn’t use the index even then!

Index Prohibitorum

• This means PostgreSQL thinks that index
doesn’t apply to this query.

• Query mis-written? Index invalid?
Confusing expression index?

• Try doing a very simple query on just that
field, and build up.

PostgreSQL is right, but wrong.

• In fact, using the index is faster even though
PostgreSQL thinks it is not.

• Try lowering random_page_cost.

• Consider changing the default statistics
target for that field.

Index Creation.

• Two ways of creating an index:

• CREATE INDEX

• CREATE INDEX CONCURRENTLY

CREATE INDEX

• Does a single scan of the table, building the
index.

• Uses maintenance_work_mem to do the
creation.

• Keeps an exclusive lock on the table while
the index build is going on.

CREATE INDEX CONCURRENTLY

• Does two passes over the table:

• Builds the index.

• Validates the index.

• If the validation fails, the index is marked as
invalid and won’t be used.

• Drop it, run again.

REINDEX

• Rebuilds an existing index from scratch.

• Takes an exclusive lock on the table.

• Generally no need to do this unless an
index has gotten badly bloated.

Index Bloat.

• Over time, B-tree indexes can become
bloated.

• Sparse deletions from within the index
range are the usual cause.

• http://pgsql.tapoueh.org/site/html/news/
20080131.bloat.html

• Generally, don’t worry about it.

http://pgsql.tapoueh.org/site/html/news/20080131.bloat.html
http://pgsql.tapoueh.org/site/html/news/20080131.bloat.html

Index Usage.

• pg_stat_user_indexes

• Reports the number of times an index is
used.

• If non-constraint indexes are not being
used, drop them.

• Indexes are very expensive to maintain.

And finally…

• … don’t create indexes on columns
prospectively.

• Only create an index in response to a
particular query problem.

• It’s easy to over-index a database!

Special Situations.

Minor version upgrade.

• Do this promptly!

• Only requires installing new binaries.

• If using packages, often as easy as just an
apt-get / yum upgrade.

• Very small amount of downtime.

Major version upgrade.

• Requires a bit more planning.

• pg_upgrade is now reliable.

• Trigger-based replication is another option
for zero downtime.

• A full pg_dump / pg_restore is always
safest, if practical.

• Always read the release notes!

Don’t get caught!

• Major versions are EOLd after 5 years.

• 9.2 support ends September 2017.

• Always have a plan for how you are going
to move between major versions.

• All parts of a replication set must be
upgraded at once (for major versions).

Bulk loading data.

• Use COPY, not INSERT.

• COPY does full integrity checking and
trigger processing.

• Do a VACUUM ANALYZE afterwards.

Very high insert rates.

• Reduce shared buffers by 25%-75%.

• Reduce checkpoint timeouts to 3min or
less.

• Make sure to do enough ANALYZEs to
keep the statistics up to date, manual if
required.

AWS

• Generally, works like any other system.

• Remember that instances can disappear and
come back up without instance storage.

• Always have a good backup / replication
implementation on AWS!

• PIOPS are useful (but pricey) if you are
using EBS.

Larger-Scale AWS Deployments

• Script everything: Instance creation,
PostgreSQL setup, etc.

• Put everything inside a VPC.

• Scale up and down as required to meet
load.

• AWS is a very expensive equipment
rental service.

PostgreSQL RDS

• Overall, not a bad product.

• BIG plus: Automatic failover.

• BIG minus: Bad performance relative to
bare EC2, often mysterious.

• Other minuses: Expensive, fixed (although
large) set of extensions.

• Not a bad place to start with PostgreSQL.

Tools

Log Analysis

• pgbadger

• The only choice now for monitoring text
logs.

• pg_stat_statements

• Maintains a buffer of data on statements
executed, within PostgreSQL.

Monitor, monitor, monitor.

• Use Nagios / Ganglia to monitor:

• Disk space — at minimum.

• CPU usage

• Memory usage

• Replication lag.

• check_postgres.pl (bucardo.org)

Lots of Tools Out There.

• DataDog, VividCortex, New Relic.

• CloudWatch (if you're on AWS).

• pganalyze

• A profusion of vendor-based tools.

Check out…

• https://wiki.postgresql.org/images/6/6a/
Dba_toolbelt_2017.pdf

https://wiki.postgresql.org/images/6/6a/Dba_toolbelt_2017.pdf
https://wiki.postgresql.org/images/6/6a/Dba_toolbelt_2017.pdf

Thank you!

thebuild.com / @xof / pgexperts.com

