Setup a Citus Cloud account for the exercises:

https://bit.ly/citustutorial

@ citusdata

Designing a Multi-tenant
Database for Scale

Lukas Fittl
Ozgun Erdogan

(@ citusdata

1. Introduction & Data Modeling (20 mins)
— Scaling & Multi-tenant Databases

2. Scaling a multi-tenant database (#1) (50 mins)
3. Break (15 mins)
4. Three Approaches to Scaling (20 mins)
5. Scaling a multi-tenant database (#2) (50 mins)
6. Q& A (30 mins)
(@ citusdata

* Scaling: Allocating more resources to your
application or database to improve
performance.

* Scaling databases is harder than scaling apps.

* Types of resources you can scale:

1. Software resources: Connections, number of
processes

2. Hardware resources: CPU, memory, and storage

@ citusdata

PostgreSQL
Database
EBS volume

Table foo

r3.xlarge Table bar
WAL logs

4 vCPUs

30 GB RAM

125 GB NAS

PostgreSQL
Database
EBS volume
Table foo
Table bar
WAL logs
r3.xlarge
4 vCPUs
30 GB RAM
500 GB NAS

@ citusdata

PostgreSQL
Database

r3.xlarge

4 vCPUs
30 GB RAM
80 GB SSD

PostgreSQL
Database

r3.4xlarge

16 vCPUs
120 GB RAM

320 GB SSD

@ citusdata

Application
(Ruby, Pyhton, Java, ...)

10.0.0.15
(Elastic IP)

Node #1

PostgreSQL

‘—
EBS volume

<€<—1| S1 S5

S7 S8

WAL logs

Node #4

PostgreSQL

10.0.0.25
(Elastic IP)
€
EBS volume
<€—]| S2 S3
S4 S9
WAL logs

@ citusdata

e Scaling up is easier than scaling out. If you can
throw more hardware at the problem, that’s
the easiest way to scale.

* Also tune your database:
http://pgconfsv.com/postgresgl-when-its-not-
vour-day-job

* When is the right time to start thinking about
scaling out?

@ citusdata

* Your SaaS business is growing, you’re on the

second largest instance type available on your
cloud / infrastructure provider

* Example tipping points

— We signed a big customer, and now all our
customers are hurting

— One-off operational queries are bringing the
database to a halt

— We expect to grow by 10x next year

@ citusdata

e Even after tuning, PostgreSQL’s autovacuum
daemon can’t catch up with our write traffic

Variable PG Default Suggested
autovacuum max 3 5oré
workers
systemram ™
maintenance work mem 64MB 3/(8*autovacuum max
workers)
autovacuum vacuum Smaller for big tables, try
0.2
scale factor 0.01

@ citusdata

* Databases will cache recent and frequently
accessed data in memory for you

 The database will track how often you use the
cache and hit disk

 For OLTP applications, most of your working
set should be fulfilled from the cache

— Look to serve 99% from the cache
@citusdata

To measure the cache hit ratio for tables:

SELECT

‘cache hit rate' AS name,

sumCheap_blks_hit) / (sumCheap_blks_hit) + sum(Cheap_blks_read)) AS ratio
FROM pg_statio_user_tables;

or the cache hit ratio for indexes:

SELECT

'index hit rate' AS name,

(sum(idx_blks_hit)) / sum(idx_blks_hit + idx_blks_read) AS ratio
FROM pg_statio_user_indexes

Source: Heroku -- Determining Cache Size

@ citusdata

* Plan ahead, optimize queries, and don’t wait
until there isn’t another option

* When it’s time to scale out, you need to better
understand your workload.

1. B2B (multi-tenant databases) or B2C applications
2. Transactional (OLTP) or analytical (OLAP)

@ citusdata

e Databases serving B2B workloads store richer
data that has more inter-dependencies.

* This data richness benefits from key relational
database features:

— Transactions
— Joins — avoid data duplication

— Primary and foreign key constraints

@ citusdata

* |f you're building a B2B application, you
already have the notion of tenancy built into
your data model

* B2B applications that serve other tenants /
accounts / organizations use multi-tenant dbs

— Physical service providers. For example, food services to
other businesses

— Digital service providers: Advertising, marketing, and sales
automation

@ citusdata

* Multi-tenant databases were commonplace in
on-premises

e SaaS applications introduced the motivation
to scale further
— Cloud enables serving many smaller tenants

— Instead of dozens of tenants, new SaaS apps reach
to and handle 1K-100K tenants

— Storage is cheap: You can store events or track a
field’s history

@ citusdata

 Google F1 is an example that demonstrates a
multi-tenant database.

e AdWords serves more than 1M tenants.

* How do you model your data to scale out
transactions, joins, and database constraints?

@ citusdata

Traditional Relational

Clustered Hierarchical

Customer(Customerld, ...)
Campaign(Campaignl/d, Customerld, ...)

Customer(Customerld, ...)
ampaign(Customerld, Campaignid, ...)

;:g:::; AdGroup(AdGroupld, Campaignld, ...) AdGroup(Customerld,YCa_mpgyn_Li, AdGroupld, ...)
. Primary key includes
Foreign key references only foreign keys that reference
the parent record. all ancestor rows.
Joining related data often requires reads KCustomer(1,...)) w
spanning multiple machines. campaign(1,3)
" Related data is clustered
AdGroup (1,3,6,...) - for fast common-case
Customer(1,...) .. .
AdGroup(6,3,... AdGroup (1,3,7,...) join processing.
Physical Customer(2,...) AdG 7 3 Caxpatonl, 4)
Layout roup(7,3,... paig 4,00 ‘J

AdGroup(8,4, ..
AdGroup(9,5,..

.
e et

Campaign(3,1,...)

Campaign(4,1,...)
Campaign(5,2,...)

\pdGroup (1,4,8,...1)

Physical data partition Customer(2,...)

boundaries occur
between root rows.

Campaign(2,5,...)
AdGroup (2,5,9,...)

Figure 2: The logical and physical properties of data storage in a traditional normalized relational schema

compared with a clustered hierarchical schema used in an F1 database.

@ citusdata

* |f you shard your tables on their primary key
(in the relational model), then distributed
transactions, joins, and foreign key constraints
become expensive.

 Model your tables using the hierarchical
database model by adding tenant_id. This
colocates data for the same tenant together
and dramatically reduces cost.

@ citusdata

/~ Stores
id | name
- et - - - ———— - - ————- - ———
1 | my book store
5 | my other store
- |
Products
id | name | store_id
——mm e s o s o e e e e e e
1 | foo | 1
2 | bar | 1
3 | baz | 1
Purch
id | product_id | store_id | price
e e Fomm e m tmm————
1 | 2 | 1 | 1008
2 | 1 | 1 | 12080
3 3 | 1 | 1199

L/

| my sock store
| old things

Products

id

| name | store_id

- Fommmm e

| new socks | 2
| old socks | 6
| old tie | 6

Purchases

v,

@ citusdata

 What happens if | have a table that doesn’t fit
into the hierarchical database model?

1. Large table outside the hierarchy: Orgs and
users that are shared across orgs

— Shard on different column and don’t join

2. Small table that is common to hierarchy

— Create reference table replicated across all
nodes

@ citusdata

* First, tune your multi-tenant (B2B) database.
Then, start thinking about scaling.

* The hierarchical database model colocates all

data that relates to a particular tenant, to the
same machine.

@ citusdata

* Distributed Table: Table that is distributed
across nodes by splitting the data set into
shards

e Reference Table: JOINs with distributed tables
(e.g. “timezones”)

 Coordinator Table: Large tables that are
independent of a tenant (e.g. users)

@ citusdata

Single Node

T

Application

@ citusdata

 Example Database Schema: B2B Online Store

Users

Stores

Products
Orders

Shipping Details

@ citusdata

orders
- order_id

Single Node

| - store_id
. users

- r H

Application . user_id

(@ citusdata

Coordinator Node

Distributed Nodes

i

Application

>
store id = 42 I

@ citusdata

Distributed Nodes

Coordinator Node r r r
= Ifr
——ITIT

@ citusdata

Scaling an Example Multi-tenant

Application & Database

@ citusdata

How to do you scale your multi-tenant
database?

* Three high level options:
1.
2.

3.

Create one database per tenant
Create one schema per tenant

Have all tenants share the same tables (and
partition / shard tables)

@ citusdata

Tenant 5 Tenant 1251 Tenant 1252

@ citusdata

* Create a separate database for each tenant

* |solation of tenants and more predictable
compliance story

 DBA responsible for managing separate
databases and resource allocation between
them

@ citusdata

Tenant 5

DETELEE

Tenant 1251

Tenant 1252

@ citusdata

* Create a separate namespace (schema) for
each tenant

* |solate data / queries for one tenant in a
schema. Make better use of resources than
the “one database per tenant” model

@ citusdata

DETELEE

1251

@ citusdata

* Have all tenants share the same tables by
adding a tenant_id column (and shard)

* Requires the application to control access to
database, or row based access controls

* Scales to 1K-100K tenants through better
resource sharing and simplifies operations and
maintenance

@ citusdata

* Each design option can address questions
around scale and isolation with enough effort.
What’'s the primary criteria for you app?

* |f you’re building for scale: Have all tenants
share the same table(s)

* |f you’re building for isolation: Create one
database per tenant

@ citusdata

If you create a separate database / schema for
each tenant, you need to allocate resources to

that database.

Hardware: disk, memory, cpu, and network
management

Database software: shared_buffers,
connection counts, backend processes

ORM software: Cached information about
databases / schemas

@ citusdata

* Your database grows with your SaaS
application.

 Schema changes (Alter Table ... Add Column)
and index creations (Create Index) are
common operations.

* What happens when you have 10K tenants
and you changed the schema for 5,000 of
those tenants and observed a failure?

@ citusdata

e What about data that varies across tenants?

* One tenant per database / schema approach
offers the most flexibility. You can tailor each
tenant’s schema to have its own tables that
are independent of another tenant.

@ citusdata

e What about data that varies across tenants?

» Different tenants / organizations may have
their own needs that a rigid data model won’t
be able to address.

* One organization may need to track their
stores in the US through their zip codes.
Another customer in Europe may only want to
keep tax ratios for each store.

@ citusdata

* |If your tenants share the same table(s), one
approach is creating a huge table with many
string columns (ValueO, Valuel, ..., Value500).

campaign_id | name | account_id | V1 | V2 | V3
------------ Yy
1202 | tv series | 1 | null | "Paris" | null
1204 | big bang | 1 | null | 94210 | 9.08
3492 | World Cup | 93 | null | "processed" | "2016-08-02"
352042 | Chocolate | 1252 | 8600 | "paym.due" | 0.08

(*) Salesforce’s multi-tenant arch: www.developerforce.com/media/
ForcedotcomBookLibrary/Force.com_Multitena ncy_WP_10150§.pdf
(@ citusdata

e PostgreSQL has powerful semi-structured data
types: hstore, json, and jsonb. These data
types can express scalar, array, and nested
fields.

campaign_id | name | account_id | payment_info
------------ e e S T T TP
1202 | tv series | 1 | "location": "Paris"
1204 | big bang | 1 | "zip": 94210, "tax": 0.08
3492 | World Cup | 93 | "status": "processed", "date": "2016-08-02"
352042 | Chocolate | 1252 | "status":"paym.due", “amount": 8600

@ citusdata

* Multi-tenant databases usually follow a Zipf /
Power law distribution

Frequency

1.E+06

1.E+05 *

1.E+04

1.E+03

1.E+02

1.E+01

1.E+00 -

1

10

100

Rank

1000

+ Data
— Zipf's law, a=1

10000

100000

@ citusdata

 What percentage of the total data size
belongs to the largest tenant?

* Guidelines around a standard Zipf distribution
and different tenant counts:

— 10 tenants: Largest tenant holds 60% of data (*)
— 10K tenants: Largest tenant holds 2% of data (*)

* Look at your data’s distribution to make
informed scaling decisions

@ citusdata

citusdata.com/get_started

(@ citusdata

Thanks!

Q&A

(@ citusdata

