
Extending View Updatability by a
Novel Theory

Prototype Implementation on PostgreSQL

Yugo Nagata, Yoshifumi Masunaga

PGCon2017
2017.5.25

Copyright © 2017 SRA OSS, Inc. Japan All rights reserved. 2

Outline

● Introduction

– View update problem
● Novel theory

– The intention-based approach
● Prototype Implementation

– Demo
● Summary

Copyright © 2017 SRA OSS, Inc. Japan All rights reserved. 3

What is “view”?
● Virtual relation based on the result-set of a stored

query

● Purposes of views

– Simplification of complex queries that are used
repeatedly

– Logical data independence

– Database security

Copyright © 2017 SRA OSS, Inc. Japan All rights reserved. 4

View Examples: Selection Views

ENO ENAME DNO SAL

003 J. Smith K41 40

006 R. Jones K41 20

007 J. Bond K55 60

EMP

ENO ENAME DNO SAL

006 R. Jones K41 20

POOR-EMP

CREATE VIEW POOR-EMP AS
SELECT * FROM EMP
WHERE SAL =< 30

CREATE VIEW K41-EMP AS
SELECT * FROM EMP
WHERE DNO = ‘K41’

ENO ENAME DNO SAL

003 J. Smith K41 40

006 R. Jones K41 20

K41-EMP

EMP[SAL ≦ 30]EMP[DNO = ‘K41’]

Real

Virtual

Copyright © 2017 SRA OSS, Inc. Japan All rights reserved. 5

View Update problem
● Users want to access views as real relations

– Read queries:
● SELECT … always OK

– Update queries:
● DELETE, INSERT, UPDATE

● Views are not always updatable

– What kind of views are updatable?

– How to translate update requests on views into
requests on base relations?

Copyright © 2017 SRA OSS, Inc. Japan All rights reserved. 6

Translation ambiguity
● Natural join view V from R and S

● Request to delete (a, b’, c) from V

● Three translation alternatives

– T1: delete (a, b’) from R

– T2: delete (b’, c) from S

– T3: execute both T1 and T2

Translation ambiguity
cannot be resolved.

→ This view is not updatable

Copyright © 2017 SRA OSS, Inc. Japan All rights reserved. 7

Updatable views in PostgreSQL
● Simple views are automatically updatable:

– Exactly only one table or another updatable view in
its FROM list

– Not contain WITH, DISTINCT, GROUP BY,
HAVING, LIMIT, or OFFSET clauses at the top
level.

– Not contain set operations (UNION, INTERSECT or
EXCEPT) at the top level.

– Select list must not contain any aggregates, window
functions or set-returning functions.

Copyright © 2017 SRA OSS, Inc. Japan All rights reserved. 8

SQL Standard
● PostgreSQL’s updatable view is basically according to

SQL-92

● View updatability is extended at SQL:1999

– JOIN and UNION ALL views are updatable under
some conditions.

– Oracle supports it partially

Copyright © 2017 SRA OSS, Inc. Japan All rights reserved. 9

INSTEAD OF triggers resolve all?
● Create INSTEAD OF triggers on views

– User can do any actions in the trigger functions

– Convert the attempted query into appropriate
actions on other table

● Specific triggers need to be defined for each views.

● The best way of using it is not clear.

Copyright © 2017 SRA OSS, Inc. Japan All rights reserved. 10

Novel Theory:
An Intention-based approach

Copyright © 2017 SRA OSS, Inc. Japan All rights reserved. 11

View Updatability
: State of base relations: View definition

: Update request for view : Translation of requests
V

T
s τ

u

View
(virtual relation)

Base relationsBase relations Base relations
Updated base

relations
Translated

request

The view is updatable if we can find an translation T
that has no side effects, and is unique.

Updated view
(virtual relation)

… is as desired?

Copyright © 2017 SRA OSS, Inc. Japan All rights reserved. 12

Traditional approaches
● Syntax-based /Functional Approach

– Dayal et. al. [‘79] and many others
● Semantics-based Approach

– Masunaga [‘84], Keller[‘86], and others
● Interaction-based Approach

– Sheth et. al.[‘88]

Not Yet Fully Resolved.
An Old and New Problem.

Copyright © 2017 SRA OSS, Inc. Japan All rights reserved. 13

The Intention-based Approach
● Resolving view update translation ambiguity by guessing

the user’s INTENTION of update

“View updatability based on pro forma
guessing of update intention”

● Idea:

– Compute each translation candidate “temporarily” so
that we can “guess” the user’s update intention
uniquely

– It depends on data in base relations.

Copyright © 2017 SRA OSS, Inc. Japan All rights reserved. 14

View updatability based on pro
forma guessing of update intention

Base relations

Update requests
for the view

Temporally
materialized view

Desired
result

Translation
alternatives

Result of
a translation
alternative

View definition

Translation
alternatives

Translation
alternatives

comparisonguessing

Copyright © 2017 SRA OSS, Inc. Japan All rights reserved. 15

Example of pro forma guessing of
update intention (1)

● Natural join view V from R and S

● Request to delete {(a, b, c), (a,b,c’)} from V

● Three translation alternatives

– T1: delete (a, b) from R

– T2: delete {(b, c), (b, c’)} from S

– T3: execute both T1 and T2

Only T1 can realize the
desired result without
side effects.

→ T1 is the user’s update intention!

Copyright © 2017 SRA OSS, Inc. Japan All rights reserved. 16

Example of pro forma guessing of
update intention (2)

● Natural join view V from R and S

● Request to delete (a, b’, c) from V

● Three translation alternatives

– T1: delete (a, b’) from R

– T2: delete (b’, c) from S

– T3: execute both T1 and T2

All of T1,T2 and T3
realize the desired result.

→ we cannot guess the update intention!

Copyright © 2017 SRA OSS, Inc. Japan All rights reserved. 17

Updatability of generally defined
views

● A View is defined recursively using
base relations and predefined
views.

– View definition tree

– View updatability can be checked
recursively.

Selection:
[eno, ename, emp.dno]

Join:
[emp.dno = dpt.dno]

Projection:
[job = ‘SE’]

Projection:
[loc = ‘Tokyo’]

Base relation:
emp

Base relation:
dept

CREATE VIEW emp_se_tokyo AS
 SELECT eno, ename, emp.dno
 FROM emp JOIN dept ON emp.dno = dpt.dno
 WHERE job = ‘SE’ AND loc = ‘Tokyo’

Copyright © 2017 SRA OSS, Inc. Japan All rights reserved. 18

Implementing a prototype on
PostgreSQL

Copyright © 2017 SRA OSS, Inc. Japan All rights reserved. 19

Prototype implementation on
PostgreSQL

● As a Proof of Concept

– To test feasibility of the theory

● The prototype is developed as an EXTENSION of
PostgreSQL.

Copyright © 2017 SRA OSS, Inc. Japan All rights reserved. 20

Two approaches
● Rule-based approach

– View support is realized with the rule system in PostgreSQL

– Update requests is provided as Query tree

– Need to modify PostgreSQL’s core code.

● Trigger-based approach

– Implement the algorithm in trigger functions

– Update requests is provided as a list of tuples

– We decided to start with the trigger-based approach

Copyright © 2017 SRA OSS, Inc. Japan All rights reserved. 21

Problem of INSTEAD OF triggers
● “STATEMENT LEVEL” INSTEAD OF trigger is not

supported

– Only “ROW LEVEL” is supported

– We need to process multiple tuples to translate
requests.

● Use STATEMENT LEVEL AFTER trigger instead of
INSTEAD OF trigger

Copyright © 2017 SRA OSS, Inc. Japan All rights reserved. 22

Transition table
● Transition table

– A new feature of PostgreSQL 10

– The before or after images for rows affected by the
statement which fired the trigger can be accessed as
tuplestores in AFTER trigger functions.

– We use tuples in these tuplestores as the requests for
views.

Copyright © 2017 SRA OSS, Inc. Japan All rights reserved. 23

Overview of the implementation
● In BEFORE trigger

– Build a view definition tree
● In INSTEAD OF trigger

– Do nothing

– Necessary to suppress auto-updatable view.
● In AFTER trigger

– Extract the request for the view from transition tables

– Check the view updatability and update the base
relations if possible.

Copyright © 2017 SRA OSS, Inc. Japan All rights reserved. 24

Building view definition trees
● Convert Query tree into a view

definition tree

– The Query tree of view definition is
available by get_view_query()

– We need to convert any sub tree to
SQL of view definition

● To check the view updatability
recursively, sub tree need to be
temporally materialized.

Selection:
[eno, ename, emp.dno]

Join:
[emp.dno = dpt.dno]

Projection:
[job = ‘SE’]

Projection:
[loc = ‘Tokyo’]

Base relation:
emp

Base relation:
dept

Copyright © 2017 SRA OSS, Inc. Japan All rights reserved. 25

Update requests for views
● Update requests for views are

represented as lists of tuples

– DELETE FROM v WHERE C = c’

→ delete {(a,b,c’), (a’,b,c’)}

– UPDATE V SET C = d WHERE C = c’

→ rewrite {(a,b,c’), (a’,b,c’)} to {(a,b,d), (a’,b,d)}

– INSERT INTO V VALUES (a, b’, d), (a, b’, e)

→ insert {(a,b’,d), (a,b’,e)}

● The lists are extracted from the tuplestores, tg_oldtable and
tg_newtable in Trigger structure, in the AFTER trigger function.

Copyright © 2017 SRA OSS, Inc. Japan All rights reserved. 26

Check view updatability
● Walk down from the top of view

definition tree recursively

– If we find a join node, use “Pro
forma guessing” algorithm.

– The sub-tree of the join node and
the children node are temporally
materialized.
(temporary tables are created)

Selection:
[eno, ename, emp.dno]

Join:
[emp.dno = dpt.dno]

Projection:
[job = ‘SE’]

Projection:
[loc = ‘Tokyo’]

Base relation:
emp

Base relation:
dept

Copyright © 2017 SRA OSS, Inc. Japan All rights reserved. 27

Pro forma guessing
● The update requests are divided for base relations.

Insert {(a,b’,d), (a,b’,e)} into V

→ insert (a,b’) into R
 insert {(b’,d), (b’,e)} into S

● Generate alternatives of translation

– The alternatives are determined logically.

● Check if only one of these alternatives can realize the desired result.
 → The join view is updatable and the translation is the answer!

1. Insert {(b’,d),(b’,e)} into S
2. Insert (b’,d) into S
3. Insert (b’,e) into S
4. Insert (a,b’) into R
5. Insert (a,b’) into R, insert {(b’,d),(b’,e)} into S

6. Insert (a,b’) into R, (b’,d) into S
7. Insert (a,b’) into R, insert (b’,e) into S
8. Insert (a,b’),(a,b’) into R Insert {(b’,d),(b’,e)} into S
9. Insert (a,b’),(a,b’) into R, Insert (b’,d) into S
10.Insert (a,b’),(a,b’) into R, Insert (b’,e) into S

Copyright © 2017 SRA OSS, Inc. Japan All rights reserved. 28

Example (1)
- INSERT INTO base1 VALUES (1,1),(2,1),(1,2);
- INSERT INTO base2 VALUES (1,2),(2,1);

- CREATE VIEW v(a,b,c) AS SELECT a,base1.b,c
 FROM base1 JOIN base2 ON base1.b = base2.b;

- INSERT INTO v VALUES (1,2,3),(1,2,4);
ERROR: cannot insert into view "v"
DETAIL: Views that do not select from a single table
or view are not automatically updatable.
HINT: To enable inserting into the view, provide an
INSTEAD OF INSERT trigger or an unconditional ON INSERT
DO INSTEAD rule.

- SELECT add_view_ext('v');

- INSERT INTO v VALUES (1,2,3),(1,2,4);
INSERT 0 2
- INSERT INTO v VALUES (2,2,2);
ERROR: not updatable based on pro forma guessing

(base1)
 a | b
-----+---
 1 | 1
 2 | 1
 1 | 2

(base2)
 b | c
-----+---
 1 | 2
 2 | 1

a | b | c |
----+---+--
 1 | 1 | 2
 2 | 1 | 2
 1 | 2 | 1
 1 | 2 | 3
 1 | 2 | 4

a | b | c |
----+---+--
 1 | 1 | 2
 2 | 1 | 2
 1 | 2 | 1

(base1)
 a | b
-----+---
 1 | 1
 2 | 1
 1 | 2

(base2)
 b | c
-----+---
 1 | 2
 2 | 1
 2 | 3
 2 | 4

Copyright © 2017 SRA OSS, Inc. Japan All rights reserved. 29

Example (2)
- DELETE FROM v WHERE c in (1,3);
DELETE 2
- DELETE FROM v WHERE c = 4;
ERROR: not updatable based on pro forma guessing

- UPDATE v SET c = 20 WHERE c = 2;
UPDATE 2
- UPDATE v SET c = 200 WHERE a = 2;
ERROR: not updatable based on pro forma guessing

(base1)
 a | b
-----+---
 1 | 1
 2 | 1
 1 | 2

(base2)
 b | c
-----+---
 1 | 20
 2 | 4

a | b | c |
----+---+--
 1 | 1 | 2
 2 | 1 | 2
 1 | 2 | 1
 1 | 2 | 3
 1 | 2 | 4

a | b | c |
----+---+--
 1 | 1 | 20
 2 | 1 | 20
 1 | 2 | 4

(base1)
 a | b
-----+---
 1 | 1
 2 | 1
 1 | 2

(base2)
 b | c
-----+---
 1 | 2
 2 | 1
 2 | 3
 2 | 4

Copyright © 2017 SRA OSS, Inc. Japan All rights reserved. 30

Demo

Copyright © 2017 SRA OSS, Inc. Japan All rights reserved. 31

Conclusion
● View update problem

● The intention-based approach

– Pro forma guessing of update intention
– JOIN views are updatable in certain cases although they are not

updatable in the traditional approach.

● Prototype Implementation

– Trigger-based approach

– Use transition table in AFTER trigger
● A new feature of PostgreSQL 10

Copyright © 2017 SRA OSS, Inc. Japan All rights reserved. 32

Future plans
● Handle the limitation and performance issues

● Test this prototype in many cases, and give feedback
to the theory to elaboration it

● We might need to investigate the rule-based approach

Copyright © 2017 SRA OSS, Inc. Japan All rights reserved. 33

Thank you

	ページ 1
	ページ 2
	ページ 3
	ページ 4
	ページ 5
	ページ 6
	ページ 7
	ページ 8
	ページ 9
	ページ 10
	ページ 11
	ページ 12
	ページ 13
	ページ 14
	ページ 15
	ページ 16
	ページ 17
	ページ 18
	ページ 19
	ページ 20
	ページ 21
	ページ 22
	ページ 23
	ページ 24
	ページ 25
	ページ 26
	ページ 27
	ページ 28
	ページ 29
	ページ 30
	ページ 31
	ページ 32
	ページ 33

