
Introduction Overview Best Practices Advanced Conclusion

An introduction to Memory Contexts

Chris Travers

Adjust GmbH

May 20, 2019



Introduction Overview Best Practices Advanced Conclusion

About the Author

(Generic Introduction of Author)



Introduction Overview Best Practices Advanced Conclusion

About Me

• New contributor to PostgreSQL (one bugfix so far)

• Heads the PostgreSQL-related R&D at Adjust GmbH

• Long-time PostgreSQL user (since 1999)

• Been around the community for a long time.



Introduction Overview Best Practices Advanced Conclusion

About Adjust

We are big PostgreSQL users. Over 10PB of data, with
near-real-time analytics on 1PB of raw data and 400,000 inbound
requests per second.

We provide mobile advertisement attribution and analytics services
to companies who buy advertising.



Introduction Overview Best Practices Advanced Conclusion

Why C?

• Fast

• Full Access to Postgres Internals

• Memory Efficient (important on large data sets)

No alternative for high performance extensions. Even Rust or C++
may have difficulties with performance trade offs.



Introduction Overview Best Practices Advanced Conclusion

General Problems with C

• No Name spaces for linker symbols

• Difficulty with Exception Handling

• Object orientation is not directly supported in the syntax

• Lower-level pointer management



Introduction Overview Best Practices Advanced Conclusion

Solutions to C Shortcomings in PostgreSQL

• Linker Symbol Collision: dlopen/dlsym and coding
conventions

• No Exceptions: ereport/elog/PGTRY/PGCATCH

• No OOP: Not relevant, we approach things more like FP

• Pointer/Memory Management: See this talk!



Introduction Overview Best Practices Advanced Conclusion

Memory Management problems with C

• Heap Fragmentation

• Memory Leaks

• Double free bugs

• No garbage collection!

This talk is about how PostgreSQL solves these problems for you.



Introduction Overview Best Practices Advanced Conclusion

Overview

How Memory is Managed in PostgreSQL



Introduction Overview Best Practices Advanced Conclusion

Memory Management in C

• Buffers and data

• Primitive types can be thought of as different sized atomic
pieces of the buffer.

• Elements may have alignment requirements.

• Structs and arrays are just syntactic sugar around buffers and
data.

• Allocate and free buffers, but write data

• Programmer controls where buffers are stored.



Introduction Overview Best Practices Advanced Conclusion

Typical C Approaches (non-PostgreSQL)

• Avoid using the heap

• Avoid malloc and free

• Use the stack for garbage collection

PostgreSQL allows you to escape these patterns when
programming against it.



Introduction Overview Best Practices Advanced Conclusion

Introducing the PostgreSQL Allocation Set

• Groups allocations together of same lifetime

• Memory is freed together

• Can be created, destroyed, or reset.

• Items within them can be palloc’d or pfreed



Introduction Overview Best Practices Advanced Conclusion

Allocation Set Details

• By default, starts out as 8kb, with each subsequent allocation
doubling

• Large buffers with internal mapping of freed space.

• Every allocation has an additional pointer to its allocation set.

• Block allocations may be marked to re-use on reset. Typically
this is just for the first block of 8k.

• Allocation sets have parents. Destroy and reset operations
cascade to children.



Introduction Overview Best Practices Advanced Conclusion

Practical Considerations

• First few blocks end up on heap in glibc

• Far fewer malloc operations needed than manually using
malloc

• Larger blocks end up in mapped segments in many platforms

• Avoids memory leaks and double free issues.

• Overall a good, performant design.



Introduction Overview Best Practices Advanced Conclusion

Introducing Memory Contexts

Although Allocation Sets and Memory Contexts here are tightly
coupled in the source, in this talk I use memory contexts
exclusively to discuss memory lifecycle control.

• Allocation Sets with Defined Lifetimes

• A tree under TopMemoryContext

• A child context may have any lifetime not longer than its
parent

• When a parent is reset or deleted, this recurses over children.



Introduction Overview Best Practices Advanced Conclusion

Global Memory Contexts as a tree

TopMemoryContext*

• PostmasterContext

• CacheMemoryContext*

• MessageContext

• TopTransactionContext
• CurTransactionContext*

• PortalContext*
• ErrorContext*

* Recommended to use



Introduction Overview Best Practices Advanced Conclusion

Operational Memory Contexts

In queries:

• Per Plan Node

• Per Tuple

• Aggregate Contexts

For logical replication workers:

• ApplyContext (worker lifetime)

• ApplyMessageContext (per protocol message)



Introduction Overview Best Practices Advanced Conclusion

Per-Tuple Context Optimizations

• First block in allocation (8k) reused

• Allocation reset at beginning of next tuple

• Malloc is expensive, so we avoid it!

• Most memory lives on the heap and is quickly reused.



Introduction Overview Best Practices Advanced Conclusion

Notes on Aggregates

Aggregations have longer lifespans than the tuples they aggregate.
Therefore:

• use AggCheckCallContext() to find Context

• Must pass in pointer to write to in second arg.

• For example AggCheckCallContext(fcinfo, &agg context)

• Otherwise may reference data from wrong tuple.



Introduction Overview Best Practices Advanced Conclusion

How pfree works

• Pointer is passed to pfree.

• Pointer - sizeof(void *) used to find memory context pointer.

• Item freed from correct memory context.

• Integer wraparound if null pointer passed where null = 0x00



Introduction Overview Best Practices Advanced Conclusion

Best Practices



Introduction Overview Best Practices Advanced Conclusion

palloc, palloc0, and MemoryContextAlloc

• palloc is like malloc but with lifecycle management

• palloc0 does extra work and cannot take advantage of calloc
shortcuts (mapping zero pages)

• MemoryContextAlloc allows you to specify a memory context.
Use this when you want to step outside the default context.



Introduction Overview Best Practices Advanced Conclusion

Best Practices for Aggregates

• use AggCheckCallContext to get aggregate memory context

• Check output of AggCheckCallContext in case not called in
agg

• When likely to allocate memory in an aggregation context,
switch to the proper memory context.



Introduction Overview Best Practices Advanced Conclusion

Using CachedMemoryContext vs TopMemoryContext

• Things that need to be cleared together belong together

• TopMemoryContext is for things that never need to be cleared

• Usually better to use a child memory context.



Introduction Overview Best Practices Advanced Conclusion

Avoid Creating Top-Level Contexts

• Hard to track in code

• Hard to reason about when they are cleared

• No reason not to make your ”top-level” a child of the global
top-level



Introduction Overview Best Practices Advanced Conclusion

Always Test with cassert Enabled

--enable-cassert has a number of important functions:

• Enables sanity checks that may impact performance

at various points in the code.

• Zeroes out all memory context memory before

de-allocating.

• Prevents a number of subtle bugs from causing

problems only in production.

• ALWAYS test when developing UDFs or stored procs

using SPI



Introduction Overview Best Practices Advanced Conclusion

Advanced Topic

The Server Programming Interface and Memory Contexts



Introduction Overview Best Practices Advanced Conclusion

Introducing SPI

SPI is the Server Programming Interface.

• For C-language user defined functions and stored procedures

• Allows running SQL queries from inside C directly against the
current backend.



Introduction Overview Best Practices Advanced Conclusion

Where SPI has MemoryContexts

• Under TopLevelContext (the SPI stack)

• Under TopTransactionContext (normal operations)

• Under PortalContext (if in implicit transaction)

• Under CachedMemoryContext (Cached Plans)



Introduction Overview Best Practices Advanced Conclusion

How SPI Allocates Plans

• Plans usually allocated in SPI executor context

• Under TopTransactionContext or PortalContext

• In theory, it is possible to allocate elsewhere initially but not
likely.

• Each plan has its own memory context.



Introduction Overview Best Practices Advanced Conclusion

How SPI Caches Plans

(reformatted slightly)

/*

* Mark it saved, reparent it under CacheMemoryContext,

* and mark all the component CachedPlanSources as

* saved. This sequence cannot fail partway through,

* so there’s no risk of long-term memory leakage.

*/

plan->saved = true;

MemoryContextSetParent(plan->plancxt,

CacheMemoryContext);



Introduction Overview Best Practices Advanced Conclusion

Conclusions

PostgreSQL has Managed Memory



Introduction Overview Best Practices Advanced Conclusion

PostgreSQL has Managed Memory

• No more malloc/free madness

• Avoids memory leaks

• High-performance

• Does most of the work for you

• but you can still mess it up



Introduction Overview Best Practices Advanced Conclusion

Thank You

Thank you all for coming.
Comments? Email me: chris.travers@adjust.com


	Introduction
	About
	Why C?
	Problems with C

	How Memory is Managed in PostgreSQL
	Basics
	PostgreSQL Allocation Sets
	Introducing the Memory Context

	Best Practices
	Best Practices

	Advanced Operations
	How SPI Caches Plans

	Conclusion
	Conclusions
	Thanks


