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About Me

• New contributor to PostgreSQL (one bugfix so far)

• Heads the PostgreSQL-related R&D at Adjust GmbH

• Long-time PostgreSQL user (since 1999)

• Been around the community for a long time.
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About Adjust

We are big PostgreSQL users. Over 10PB of data, with
near-real-time analytics on 1PB of raw data and 400,000 inbound
requests per second.

We provide mobile advertisement attribution and analytics services
to companies who buy advertising.
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Why C?

• Fast

• Full Access to Postgres Internals

• Memory Efficient (important on large data sets)

No alternative for high performance extensions. Even Rust or C++
may have difficulties with performance trade offs.
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General Problems with C

• No Name spaces for linker symbols

• Difficulty with Exception Handling

• Object orientation is not directly supported in the syntax

• Lower-level pointer management
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Solutions to C Shortcomings in PostgreSQL

• Linker Symbol Collision: dlopen/dlsym and coding
conventions

• No Exceptions: ereport/elog/PGTRY/PGCATCH

• No OOP: Not relevant, we approach things more like FP

• Pointer/Memory Management: See this talk!
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Memory Management problems with C

• Heap Fragmentation

• Memory Leaks

• Double free bugs

• No garbage collection!

This talk is about how PostgreSQL solves these problems for you.
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Overview

How Memory is Managed in PostgreSQL
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Memory Management in C

• Buffers and data

• Primitive types can be thought of as different sized atomic
pieces of the buffer.

• Elements may have alignment requirements.

• Structs and arrays are just syntactic sugar around buffers and
data.

• Allocate and free buffers, but write data

• Programmer controls where buffers are stored.
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Typical C Approaches (non-PostgreSQL)

• Avoid using the heap

• Avoid malloc and free

• Use the stack for garbage collection

PostgreSQL allows you to escape these patterns when
programming against it.
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Introducing the PostgreSQL Allocation Set

• Groups allocations together of same lifetime

• Memory is freed together

• Can be created, destroyed, or reset.

• Items within them can be palloc’d or pfreed
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Allocation Set Details

• By default, starts out as 8kb, with each subsequent allocation
doubling

• Large buffers with internal mapping of freed space.

• Every allocation has an additional pointer to its allocation set.

• Block allocations may be marked to re-use on reset. Typically
this is just for the first block of 8k.

• Allocation sets have parents. Destroy and reset operations
cascade to children.
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Practical Considerations

• First few blocks end up on heap in glibc

• Far fewer malloc operations needed than manually using
malloc

• Larger blocks end up in mapped segments in many platforms

• Avoids memory leaks and double free issues.

• Overall a good, performant design.
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Introducing Memory Contexts

Although Allocation Sets and Memory Contexts here are tightly
coupled in the source, in this talk I use memory contexts
exclusively to discuss memory lifecycle control.

• Allocation Sets with Defined Lifetimes

• A tree under TopMemoryContext

• A child context may have any lifetime not longer than its
parent

• When a parent is reset or deleted, this recurses over children.
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Global Memory Contexts as a tree

TopMemoryContext*

• PostmasterContext

• CacheMemoryContext*

• MessageContext

• TopTransactionContext
• CurTransactionContext*

• PortalContext*
• ErrorContext*

* Recommended to use
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Operational Memory Contexts

In queries:

• Per Plan Node

• Per Tuple

• Aggregate Contexts

For logical replication workers:

• ApplyContext (worker lifetime)

• ApplyMessageContext (per protocol message)
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Per-Tuple Context Optimizations

• First block in allocation (8k) reused

• Allocation reset at beginning of next tuple

• Malloc is expensive, so we avoid it!

• Most memory lives on the heap and is quickly reused.
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Notes on Aggregates

Aggregations have longer lifespans than the tuples they aggregate.
Therefore:

• use AggCheckCallContext() to find Context

• Must pass in pointer to write to in second arg.

• For example AggCheckCallContext(fcinfo, &agg context)

• Otherwise may reference data from wrong tuple.



Introduction Overview Best Practices Advanced Conclusion

How pfree works

• Pointer is passed to pfree.

• Pointer - sizeof(void *) used to find memory context pointer.

• Item freed from correct memory context.

• Integer wraparound if null pointer passed where null = 0x00
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Best Practices
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palloc, palloc0, and MemoryContextAlloc

• palloc is like malloc but with lifecycle management

• palloc0 does extra work and cannot take advantage of calloc
shortcuts (mapping zero pages)

• MemoryContextAlloc allows you to specify a memory context.
Use this when you want to step outside the default context.
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Best Practices for Aggregates

• use AggCheckCallContext to get aggregate memory context

• Check output of AggCheckCallContext in case not called in
agg

• When likely to allocate memory in an aggregation context,
switch to the proper memory context.
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Using CachedMemoryContext vs TopMemoryContext

• Things that need to be cleared together belong together

• TopMemoryContext is for things that never need to be cleared

• Usually better to use a child memory context.
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Avoid Creating Top-Level Contexts

• Hard to track in code

• Hard to reason about when they are cleared

• No reason not to make your ”top-level” a child of the global
top-level
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Always Test with cassert Enabled

--enable-cassert has a number of important functions:

• Enables sanity checks that may impact performance

at various points in the code.

• Zeroes out all memory context memory before

de-allocating.

• Prevents a number of subtle bugs from causing

problems only in production.

• ALWAYS test when developing UDFs or stored procs

using SPI
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Advanced Topic

The Server Programming Interface and Memory Contexts
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Introducing SPI

SPI is the Server Programming Interface.

• For C-language user defined functions and stored procedures

• Allows running SQL queries from inside C directly against the
current backend.
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Where SPI has MemoryContexts

• Under TopLevelContext (the SPI stack)

• Under TopTransactionContext (normal operations)

• Under PortalContext (if in implicit transaction)

• Under CachedMemoryContext (Cached Plans)
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How SPI Allocates Plans

• Plans usually allocated in SPI executor context

• Under TopTransactionContext or PortalContext

• In theory, it is possible to allocate elsewhere initially but not
likely.

• Each plan has its own memory context.
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How SPI Caches Plans

(reformatted slightly)

/*

* Mark it saved, reparent it under CacheMemoryContext,

* and mark all the component CachedPlanSources as

* saved. This sequence cannot fail partway through,

* so there’s no risk of long-term memory leakage.

*/

plan->saved = true;

MemoryContextSetParent(plan->plancxt,

CacheMemoryContext);
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Conclusions

PostgreSQL has Managed Memory
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PostgreSQL has Managed Memory

• No more malloc/free madness

• Avoids memory leaks

• High-performance

• Does most of the work for you

• but you can still mess it up
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Thank You

Thank you all for coming.
Comments? Email me: chris.travers@adjust.com
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