
https://speakerdeck.com/peterg/nbtree-arch-pgcon

nbtree:
An architectural
perspective

PGCon 2019 — May 30, 2019

https://speakerdeck.com/peterg/nbtree-arch-pgcon

https://speakerdeck.com/peterg/nbtree-arch-pgcon

Peter  
Geoghegan
@petervgeoghegan

https://speakerdeck.com/peterg/nbtree-arch-pgcon

https://speakerdeck.com/peterg/nbtree-arch-pgcon

My perspective
Good mental model important for working on the
nbtree code.

- Perhaps this talk will make that easier.

Must approximate reality, while leaving out
inessential details that hinder understanding.

PostgreSQL 12 work will be discussed along the
way.

https://speakerdeck.com/peterg/nbtree-arch-pgcon

https://speakerdeck.com/peterg/nbtree-arch-pgcon

Overview
1. Big picture with B-Trees

What’s the point of this “high key” business, anyway?

2. Seeing the forest for the trees

Reasoning about nbtree invariants when designing enhancements.

3. A place for everything, and everything in its place

How reliably unique keys simplify many things.

4. Future work

Outlook for future improvements.

https://speakerdeck.com/peterg/nbtree-arch-pgcon

https://speakerdeck.com/peterg/nbtree-arch-pgcon

Big picture with B-Trees

Page splits add new pages.

Recursive growth — page splits occur in leaf pages
that fill with tuples pointing to table, and cascade
upwards to maintain tree.

Actually bush-like — very short, and very, very wide.

- New levels added to tree at logarithmic intervals,
during root page split.

Just a few localized atomic operations that affect only a
few pages at a time used for everything.

https://speakerdeck.com/peterg/nbtree-arch-pgcon

https://speakerdeck.com/peterg/nbtree-arch-pgcon

The key space

Every page “owns” a range of values in the key
space/key domain.

- Starts out with a single root page (also a leaf), that
owns the range “-∞” through to “+∞”.

- Splitting rightmost leaf page creates new leaf page
that owns a range starting just after the final tuple in
new left half, through to the sentinel “+∞”.

We always have one particular page that any possible
new tuple should go on (at least on Postgres 12).

https://speakerdeck.com/peterg/nbtree-arch-pgcon

https://speakerdeck.com/peterg/nbtree-arch-pgcon

Protecting tree structure

Locks used to protect physical structure as tree grows.

- Must prevent the tree structure from becoming
inconsistent (e.g., in a state that causes an index
scan to skip over relevant data).

- Various schemes used over past 40+ years.

nbtree uses Lehman & Yao algorithm.

- Have right sibling pointer and high key.

- Sometimes called “B-Link Trees”.

https://speakerdeck.com/peterg/nbtree-arch-pgcon

370

Figure 3. A B-link tree page split

IP.I ~ IP.I '~1 ' I ~ l . ~ , . . l ' r , . . I
/ \ ... \

° . . ° , ,
° , ,

, ° °

(a) Example B-link tree node
n-1 keys

n pointers

I 1 " " 111~,~,,itlll " " " I 't-~////~1
t ,~ ~ , ~ t ,~

d+ 1 d+ l
pointers pointers

(b) Before half-split

/ \

(c) After half-split

n-1 keys
n pomters

I " " .l,I I.I II '

I,l'"l ,,,/~s _.H,, ~ kT.. i ~ / / / / ~ f _ "
z ~ / \

d+2 d+l
pointers pointers

n keys
n +1 pointers

Jzl " ' " ,~[r%.,i~tl I.I I I '

d+2 d+l
pointers pointers

(d) After key propagation

Pictured: Diagram from
“Performance of B+Tree Concurrency Control
Algorithms“
by V. Srinivasan and Michael J. Carey

https://speakerdeck.com/peterg/nbtree-arch-pgcon

Moving right to recover

B-Link trees (Lehman and Yao B-Trees) take an
optimistic approach, in contrast with earlier, pessimistic
designs.

Concurrent page splits might confuse searches that
descend tree — can be dealt with a few ways.

Earlier approaches involved “coupling” locks,
preventing concurrent page splits altogether.

Lehman and Yao’s algorithm detects and recovers
from concurrent splits instead.

https://speakerdeck.com/peterg/nbtree-arch-pgcon

https://speakerdeck.com/peterg/nbtree-arch-pgcon

Recovering from a concurrent
page split

Lehman and Yao divide complicated page split into
two simpler atomic steps.

- Initial step creates new right sibling, and shares
tuples amongst original (left) page and new right
page.

- Second step inserts new downlink for right page.

Meanwhile, scans must check high key after
descending on to a page — verifies that this is still
the page covering the value of interest.

https://speakerdeck.com/peterg/nbtree-arch-pgcon

https://speakerdeck.com/peterg/nbtree-arch-pgcon

Overview
1. Big picture with B-Trees

What’s the point of this “high key” business, anyway?

2. Seeing the forest for the trees

Reasoning about nbtree invariants when designing enhancements.

3. A place for everything, and everything in its place

How reliably unique keys simplify many things.

4. Future work

Outlook for future improvements.

https://speakerdeck.com/peterg/nbtree-arch-pgcon

https://speakerdeck.com/peterg/nbtree-arch-pgcon

-∞ ↧ Papa ↧ +∞

-∞ ↧ Charlie ↧ Golf ↧ Mike ↧ Papa "-∞" ↧ Tango ↧ X-Ray ↧ +∞

November Oscar PapaAlfa Bravo Charlie Delta Echo Foxtrot Golf Juliet Kilo Lima Mike Mike Quebec Romeo Sierra Tango Uniform Victor XRay XRay Yankee Zulu +∞

https://speakerdeck.com/peterg/nbtree-arch-pgcon

https://speakerdeck.com/peterg/nbtree-arch-pgcon

Seeing the forest for the trees

Lehman and Yao paper not a particularly good guide to nbtree.

nbtree is concerned with distinctions that L&Y either ignore
or couldn’t possibly anticipate.

- Variable-sized keys.

- Page model, IndexTuple struct format.

Few true special cases, despite appearances to the
contrary.

Problem made worse by generally odd approach L&Y take.

https://speakerdeck.com/peterg/nbtree-arch-pgcon

– Lanin & Sasha paper (LS86)
 [emphasis added], from “2.2 Locks”

“The locking model used in [LY81] assumed that an
entire node could be read or written in one

indivisible operation
…

Since the atomicity of node reads and writes is not
a reasonable assumption in some environments

(such as when the structure is in primary
memory), and in order to make comparisons to
other algorithms easier, we use a more general

locking scheme similar to the one in [BS77]”

https://speakerdeck.com/peterg/nbtree-arch-pgcon

Terminology
Terminology makes things harder — equivalent but not identical
representation lets nbtree use IndexTuple struct for everything.
This is convenient for low-level page code, but can make high-
level discussions confusing.

Pivot tuples.

- Contain separator keys and/or downlinks — guide scans.

- Usually have both together, sometimes just separator (high
key), other times just a downlink (“-∞” tuple).

Non-pivot tuples.

- Only on leaf level, cannot be truncated, always point to
table.

https://speakerdeck.com/peterg/nbtree-arch-pgcon

https://speakerdeck.com/peterg/nbtree-arch-pgcon

Invariants

Carefully considering how to satisfy invariants can simplify
the design of nbtree enhancements.

Relationship between separator keys and real keys can
be fairly loose.

- Values in same domain as entries, but it’s okay if they
don’t actually match any real entry (non-pivot key).

- Separators are a good target for prefix compression
(a generic optimization) — there is seldom any need to
decompress, and a good whole-page prefix is already
available.

https://speakerdeck.com/peterg/nbtree-arch-pgcon

https://speakerdeck.com/peterg/nbtree-arch-pgcon

Invariants (cont.)

Good B-Tree designs not only anticipate future work — they
simplify it as a concomitant advantage.

Subtrees can be isolated and reasoned about as
independent units.

- All subtrees own discrete range in the key space.

- Page deletion relies on this to isolate subtree undergoing
deletion (multi-level deletion).

- Prefix compression of leaf page items would probably work
based on similar principles — if only because compression
based on current keys might break page deletion.

https://speakerdeck.com/peterg/nbtree-arch-pgcon

https://speakerdeck.com/peterg/nbtree-arch-pgcon

Overview
1. Big picture with B-Trees

What’s the point of this “high key” business, anyway?

2. Seeing the forest for the trees

Reasoning about nbtree invariants when designing enhancements.

3. A place for everything, and everything in its place

How reliably unique keys simplify many things.

4. Future work

Outlook for future improvements.

https://speakerdeck.com/peterg/nbtree-arch-pgcon

https://speakerdeck.com/peterg/nbtree-arch-pgcon

A place for everything, and
everything in its place

Uniqueness required by Lehman and Yao.

nbtree treats heap TID as tiebreaker column in
v12. L&Y’s requirement now met, finally.

TIDs are reliably unique, so now keys are
themselves unique.

- Needed for “retail index tuple deletion”.

- Surprisingly helpful in other ways.

https://speakerdeck.com/peterg/nbtree-arch-pgcon

https://speakerdeck.com/peterg/nbtree-arch-pgcon

Heap TID as a tiebreaker

For the most part, “heap TID column” is not
special, at least internally.

Inserts must specify heap TID.

“Retail index tuple deletion” would have to work
in the same way, since it’s necessary to
unambiguously identify the same tuple when
there are (logical) duplicates.

https://speakerdeck.com/peterg/nbtree-arch-pgcon

https://speakerdeck.com/peterg/nbtree-arch-pgcon

The false economy of “getting
tired” when inserting duplicates

Old approach had insertion place a duplicate anywhere it
wanted to among leaf pages that have ever had duplicates.

- Go through pages that store duplicates on the leaf level until
some free space is located…

- …or until we “get tired” — implementation unable to spend
too long locating theoretically available free space.

- Getting tired occurs at random — give up and split page.

Insertion won’t “get tired” with Postgres 12 indexes, which can
make affected indexes ~16% smaller in simple cases.

Gitlab may have been affected [1].
[1] https://about.gitlab.com/handbook/engineering/infrastructure/blueprint/201901-postgres-bloat/

https://speakerdeck.com/peterg/nbtree-arch-pgcon

https://speakerdeck.com/peterg/nbtree-arch-pgcon

Realistic small Postgres 12
index (root page + 3 leaf pages)

-∞ ↧ 367, '-∞' ↧ 733, '-∞' ↧ +∞

1, '(0,1)' 2, '(0,2)' ... 366, '(5,61)' 367, '-∞'

366 non-pivot items & high key

367, '(6,1)' 368, '(6,2)' ... 732, '(11,61)' 733, '-∞'

366 non-pivot items & high key

733, '(12,1)' 734, '(12,2)' ... +∞

2+ non-pivot items, implicit +∞ high key

https://speakerdeck.com/peterg/nbtree-arch-pgcon

12 l R. Bayer and K. Unterauer

Bigbird, Burt, Cookiemonster, Ernie, Snuffleopogus

In order to insert the key “Grouch” with its record, we must split this leaf into
two as follows:

Bigbird, Burt, Cookiemonster Ernie, Grouch, Snuffleopogus

Instead of storing the key “Ernie” in the index, it obviously suffices to use one of
the one-letter strings “D”, “E” for the same purpose. In general we can select
any string s with the property

Cookiemonster < s 5 Ernie (1)

and store it in the index part to separate the two nodes. We call such a string s
a separator (between Cookiemonster and Ernie). It seems prudent to choose one
of the shortest separators.

Note. If the keys are words over some alphabet and the ordering of the keys is
the alphabetic order, then the following property, called the pre$x property, holds:

Let x and y be any two keys such that x < y. Then there is a unique prefix g of
y such that (a) g is a separator between x and y, and (b) no other separator
between x and y is shorter than g. For the rest of this paper, we assume that the
prefix property holds.

The technique of moving a shortest separator to the father node when a node is
being split can be used only for splitting leaves, not branch nodes. When a branch
node is being split, one of the separators on that node must be moved up one
level in the tree.

As mentioned before, a B*-tree can be considered as consisting of a B*-index and
a B*-file. The B*-index itself is just a conventional B-tree of a subset of the keys
in the B*-file together with the maintenance algorithms for B-trees described in [4].

DeJinition. A simple prefix B-tree is a B*-tree in which the B*-index is replaced
by a B-tree of (variable length) separators.

Note. Since a key in a B*-index is also a separator, although not necessarily a
shortest possible separator, the class of simple prefix B-trees contains the class of
B*-trees.

Except for the slight complication of always having variable length separators,
the search algorithm for simple prefix B-trees is exactly the same as for B*-trees.

Split interval. The performance bottleneck of our trees is the number of ac-
cesses to the backup store needed for INSERT, DELETE, and RETRIEVE
operations. This number is essentially determined by the height of the tree since
the pages along the retrieval path for some key x from the root to some leaf are
always needed for those three operations.

Performance can therefore be improved by making the trees as flat as possible,
which can be achieved by making the branching degree of the nodes, especially
in the upper parts of the tree (i.e. near the root), as high as possible. This branch-
ing degree is determined by the number of (separator, pointer) pairs that can be
stored on a fixed size page. Pointers are generally rather short and have a fixed
ACM Transactions on Database Systems, Vol. 2, No. 1, March 1977.

Pictured: Diagram from “Prefix B-Trees“ by Bayer and Unterauer, 1977

https://speakerdeck.com/peterg/nbtree-arch-pgcon

Classic suffix truncation applied
to earlier example

-∞ ↧ P ↧ +∞

-∞ ↧ D ↧ G ↧ N ↧ P "-∞" ↧ T ↧ Y ↧ +∞

November Oscar PAlfa Bravo D Delta Echo Foxtrot G Juliet Kilo Lima Mike N Quebec Romeo Sierra T Uniform Victor XRay Y Yankee Zulu +∞

https://speakerdeck.com/peterg/nbtree-arch-pgcon

https://speakerdeck.com/peterg/nbtree-arch-pgcon

Classic suffix truncation applied
to earlier example

-∞ ↧ D ↧ G ↧ N ↧ P ↧ T ↧ Y ↧ +∞

Alfa Bravo D Delta Echo Foxtrot G Juliet Kilo Lima Mike N November Oscar P Quebec Romeo Sierra T Uniform Victor XRay Y Yankee Zulu +∞

https://speakerdeck.com/peterg/nbtree-arch-pgcon

https://speakerdeck.com/peterg/nbtree-arch-pgcon

Choosing a split point

Leaf page splits primarily about equalizing free space on
each side, to meet future needs.

Also only place where new separator keys are made.

- New high key for left page becomes separator
before new downlink in parent for right page.

- Internal page splits only use copies (truncating an
already-truncated key would be wrong).

Suffix truncation occurs when new separator created by
leaf split.

https://speakerdeck.com/peterg/nbtree-arch-pgcon

https://speakerdeck.com/peterg/nbtree-arch-pgcon

Choosing a split point (cont.)

Algorithm can give some weight to suffix truncation,
while continuing to make space utilization the first
priority.

Even very small adjustments can help suffix
truncation a lot.

Algorithm won’t accept a totally lopsided split to
make suffix truncation more effective.

https://speakerdeck.com/peterg/nbtree-arch-pgcon

242 Data Structures and Algorithms

“Smith, Jack” to “Smith, Jason.” Thus, the search argument must be
in that range and also start with “Smith, Ja.” For all remaining com-
parisons, this prefix may be assumed and thus skipped in all remaining
comparisons within this search. Note that dynamic prefix truncation
also applies to B-tree nodes stored with prefix truncation. In this exam-
ple, the string “a” beyond the truncated prefix “Smith, J” may be
skipped in all remaining comparisons.

While prefix truncation can be employed to all nodes in a B-
tree, suffix truncation pertains specifically to separator keys in branch
nodes [10]. Prefix truncation is most effective in leaf nodes whereas suf-
fix truncation primarily affects branch nodes and the root node. When
a leaf is split into two neighbor leaves, a new separator key is required.
Rather than taking the highest key from the left neighbor or the lowest
key from the right neighbor, the separator is chosen as the shortest
string that separates those two keys in the leaves.

For example, assume the key values shown in Figure 3.6 are in the
middle of a node that needs to be split. The precise center is near the
long arrow. The minimal key splitting the node there requires at least 9
letters, including the first letter of the given name. If, on the other hand,
a split point anywhere between the short arrows is acceptable, a single
letter suffices. A single comparison of the two keys defining the range
of acceptable split points can determine the shortest possible separa-
tor key. For example, in Figure 3.6, a comparison between “Johnson,
Lucy” and “Smith, Eric” shows their first difference in the first letter,
indicating that a separator key with a single letter suffices. Any letter

…
Johnson, Kim
Johnson, Lucy
Johnson, Mitch
Miller, Aaron
Miller, Bertram
Miller, Cyril
Miller, Doris
Smith, Eric
Smith, Frank
…

Fig. 3.6 Finding a separator key during a leaf split.

Pictured: Diagram from “Modern B-Tree Techniques“ by Goetz Graefe — Prefix B-Trees chapter

https://speakerdeck.com/peterg/nbtree-arch-pgcon

Choosing a split point (cont.)

Algorithm in Postgres 12 takes a holistic view of the problem.

May make slight adjustment with simple, common cases (e.g.
pgbench indexes).

But sometimes radically different to previous approach!

- Behavior with duplicates is important with heap TID as a
tiebreaker column.

- A 50:50 page split is essentially a guess, and not necessarily
a good one.

- A 90:10 page split (rightmost split) is well known case where
split point is based on inferring insertion patterns.

https://speakerdeck.com/peterg/nbtree-arch-pgcon

https://speakerdeck.com/peterg/nbtree-arch-pgcon

TPC-C indexes and “split after
new tuple” optimization
Insertion pattern is very often not random

Successive splits over short period of time that
affect same area are very common.

Multi-column indexes may have auto-incrementing
identifiers grouped by an order number or similar.

Industry standard TPC-C benchmark has lots of
this. All indexes taken together are ~40% smaller
with Postgres 12.

https://speakerdeck.com/peterg/nbtree-arch-pgcon

TPC Benchmark™ C - Standard Specification, Revision 5.11 - Page 11 of 130

Customers call the Company to place a new order or request the status of an existing order. Orders are composed of
an average of 10 order lines (i.e., line items). One p ercent of all order lines are for items not in -stock at the regional
warehouse and must be supplied by another warehouse.

The Company's system is also used to enter payments from customers, process orders for delivery, and examine
stock levels to identify potential supply shortages.

1.2 Database Entities, Relationships, and Characteristics

1.2.1 The components of the TPC-C database are defined to consist of nine separate and ind ividua l tables.
The relationships among these tables are defined in the entity -relationship d iagram shown below and are subject to
the rules specified in Clause 1.4.

Warehouse Dis trict

His tory

Customer
New-Order

OrderOrder-L ineItem

Stock

W W*10

3k

1+

W*30k

W*30k+5-15

0-1

1+
W*30k+

W*9k+

W*300k+

3+

100k

W

W*100k

100k

10

Legend:

• All numbers shown illustrate the database population requirements (see Clause 4.3) .

• The numbers in the entity blocks represent the card inality of the tables (number of rows). These numbers are
factored by W, the number of Warehouses, to illustrate the database scaling. (see Clause 4).

• The numbers next to the relationship arrows represent the card inality of the relationships (average number of
child ren per parent).

• The plus (+) symbol is used after the card inality of a relationship or table to illustrate that this number is
subject to small variations in the initial database population over the measurement interval (see Clause 5.5) as
rows are added or deleted .

1.3 Table Layouts

1.3.1 The following list defines the minimal structure (list of attributes) of each table where:

• N unique IDs means that the attribute must be able to hold any one ID within a minimum set of N unique
IDs, regard less of the physical representation (e.g., binary, packed decimal, alphabetic, etc.) of the attribute.

• variable text, size N means that the attribute must be able to hold any string of characters of a variable length
with a maximum length of N. If the attribute is stored as a fixed length string and the string it h olds is shorter
than N characters, it must be padded with spaces.

TPC-C’s order system is more or less a circular buffer, or queue

https://github.com/petergeoghegan/benchmarksql

Pictured: Diagram from TPC-C spec, Revision 5.11

https://github.com/petergeoghegan/benchmarksql

https://speakerdeck.com/peterg/nbtree-arch-pgcon

1,1 1,2 1,3 2,1

“Split after new tuple” example

Order numbers:

Line items:

Initial state: one page, already 100% full

1, 2

1, 2, 3…

https://speakerdeck.com/peterg/nbtree-arch-pgcon

https://speakerdeck.com/peterg/nbtree-arch-pgcon

1,1 1,2 1,3 2,1

50:50 page splits: Optimized page splits:

1,1 1,2

1,3 1,4

1,5 1,6 2,1

1,1 1,2 1,3 1,4

1,5 1,6

2,1

Insert 4, 5, 6…

https://speakerdeck.com/peterg/nbtree-arch-pgcon

https://speakerdeck.com/peterg/nbtree-arch-pgcon

50:50 page splits: Optimized page splits:

1,1 1,2

1,3 1,4

1,5 1,6

1,7 1,8 1,9 2,1

1,1 1,2 1,3 1,4

1,5 1,6 1,7 1,8

1,9

2,1

Insert 7, 8, 9… (Last slide’s state)

https://speakerdeck.com/peterg/nbtree-arch-pgcon

https://speakerdeck.com/peterg/nbtree-arch-pgcon

50:50 page splits: Optimized page splits:

1,1 1,2

1,3 1,4

1,5 1,6

1,7 1,8

1,9 1,10

1,11 1,12 2,1

1,1 1,2 1,3 1,4

1,5 1,6 1,7 1,8

1,9 1,10 1,11 1,12

2,1

Insert 10,11,12… (Last slide’s state)

https://speakerdeck.com/peterg/nbtree-arch-pgcon

https://speakerdeck.com/peterg/nbtree-arch-pgcon

Overview
1. Big picture with B-Trees

What’s the point of this “high key” business, anyway?

2. Seeing the forest for the trees

Reasoning about nbtree invariants when designing enhancements.

3. A place for everything, and everything in its place

How reliably unique keys simplify many things.

4. Future work

Outlook for future improvements.

https://speakerdeck.com/peterg/nbtree-arch-pgcon

https://speakerdeck.com/peterg/nbtree-arch-pgcon

Future work

[1] https://wiki.postgresql.org/wiki/Key_normalization

Key normalization [1] — make separator keys
into conditioned binary string that is simply
strcmp()’d during index scans, regardless of
“tuple shape”.

- Prefix compression.

- “Classic” suffix truncation.

Go even further — “abbreviated keys” in internal
pages?

https://speakerdeck.com/peterg/nbtree-arch-pgcon
https://wiki.postgresql.org/wiki/Key_normalization

https://speakerdeck.com/peterg/nbtree-arch-pgcon

CPU cache misses

Binary searches incur cache misses during descent
of tree — these can be minimized.

- Abbreviated keys in line pointer array.

These optimizations can be natural adjuncts.

- Lehman & Yao don’t care about how values are
represented on the page.

- “Modern B-Tree techniques” survey paper is a
great reference.

https://speakerdeck.com/peterg/nbtree-arch-pgcon

https://speakerdeck.com/peterg/nbtree-arch-pgcon

Index tuple header with offsets

May need to accommodate table access methods
with row identifiers that are not at all like TIDs.

Tuple header offset makes it easy for that to be
accessed quickly, but also accessed as just
another attribute.

Skip scans.

[Dynamic] prefix truncation.

https://speakerdeck.com/peterg/nbtree-arch-pgcon

https://speakerdeck.com/peterg/nbtree-arch-pgcon

Conclusions
It pays to consult multiple sources when working
on nbtree codebase.

- If only to confirm your original understanding.

- Terminology causes problems — sometimes
subtle distinctions matter a lot.

Visualizing real indexes using tools like contrib/
pageinspect can be very helpful.

https://speakerdeck.com/peterg/nbtree-arch-pgcon

https://speakerdeck.com/peterg/nbtree-arch-pgcon

Thanks!

