
VeniceDB
a Peta-byte scale real time analytics service

running Postgres on Azure
Min Wei

PGCon 2019

Agenda

• Use Case
• How Citus/Postgres is used
• Why Citus/Postgres
• Discussions

Use Case

• Data warehouse for OS Measure Data

• Covers over 800M unique devices monthly

• Windows generates over 100K events, a few PBs/day

• Measure is mostly computed from complex event joining

• Measure user experience, reliability, …

• E.g. Start Menu Click event + Start Menu Launch event => Start Menu launch latency

• Dimension is enriched at server side batch processing

• 5TBs per day

• Executive decision dashboard

• 1000s of monthly active users

• 100s of dashboard pages

• 6+ million queries per day

* https://blogs.windows.com/windowsexperience/2019/03/06/data-insights-and-listening-to-improve-the-customer-

experience/#j0PWI3cZMlHptKbC.97

https://blogs.windows.com/windowsexperience/2019/03/06/data-insights-and-listening-to-improve-the-customer-experience/

Before VeniceDB

• There were solutions being developed and in production
• Gen1 Sharded SQL row store
• Gen2 Sharded SQL columnar store

• Distributed columnar store

• Hard problems
• Unable to scale to dimensionality

• Requires MapReduce batch processing to prepare data cubes
• Combinatorial growth
• Data skew

• Unable to deal with data variety and calculation complexity
• Some SQL Scripts are over 500KB!

• Unable to serve concurrent dashboard queries

VeniceDB Service Architecture

Measure
Data Lake

(Azure Blob Storage)

Citus/Postgres

Data
Access
Service

Raw
Metrics Report

Table

Report
Table

• In Database MapReduce
• Unify real time and

historical data
• No lambda!

Database Cluster Overview

• A custom build of Citus-Enterprise 8.2 and Postgres 11.3
• Started from Citus 7.0 and Postgres 10.0
• Leverage new features: parallel Btree indexing, parallel query, JIT, …

• Production database cluster
• 2816 Cores, 18TB DRAM, 1PB Azure Premium Storage, Multi-PB Azure Blob Storage

• 2 Physical clusters behind a query router (Azure Web Service and Azure Redis Service)

• 20K+ measures over 800M unique monthly active devices
• Ingest and delete ~5TB data per day
• P75 query latency ~90ms/200ms
• Support long running queries up to 4 mins.
• Support batch scheduled jobs that can run up for 2hours

Measure Data Integration

• ~10 types of schema
• Unified schema

CREATE TABLE measures (
measureid int,
eventdatetime TIMESTAMPTZ,
streamdatetime TIMESTAMPTZ
data jsonb
hashPartitionKey bigint,

) PARTITION BY RANGE (streamdatetime);

• Ingestion runtime
• Most data arrives hourly, and business metrics data at minute time grain
• Offsets table stored on the Citus coordinator node
• Standalone go program running on Citus coordinator

• Impressive GC in golang runtime, no visible pause with 100GB heap, run for months continuously

In Database MapReduce

• Slice the JSON data
• Citus Distributed Upsert

• Co-located with original measures data
• Reshuffle through coordinator

• Partition ~1B rows per hour into 15 day buckets
• Report table time range partitioned by eventdatetime
• Parallel upsert into 15 daily tables
• Total # of jobs = 15 x ~10 kinds of report

• JSON dimensions are kept for some tables
• Heavily indexed daily tables
• Over 50 partial covering indexes
• Trade disk space for performance

Serving Queries

• Multi-dimensional calculations
• On demand
• Index Only Scan

• Data types
• Metric

• <count, sum>
• {<weight, value>}
• histograms

• Dimension
• Scalar
• Array

• Aggregation types
• Average
• Percentile
• Latest Value

What about alternatives?

• There are many choices!
• Almost all SQL Columnar Store
• Apache Projects: Kylin, Pinot, Druid, Spark (DataBrick)

• Issues
• SQL engine cannot handle nested high cardinality group by queries

• Lack of extensible data types such as array
• Too much lean on one trick: scanning

• Much less compression rate with JSON data, in particular GUID fields
• Slow concurrent query performance to drive large scale decision dashboards
• No updates when you really need them

• Data can be wrong for various reasons, fixing data is often better than redeploying services!
• Additional management complexity and data preparation services

• Hive/Spark, HDFS/HBase, ZooKeeper

Discussions I

• Declarative Programming takes time to practice!
• Data structure

• Table schema
• Indexing
• Partitioning and Paging

• Algorithms
• Distributed query requires data movement aware
• Postgres has rich data types and join types

• Execution
• Master “Explain”
• Locking
• Watch auto vacuum thresholds
• Grafana as a visual debugger

• IO
• Memory
• Networking
• Disk utilization
• Connection count

Discussions II

• Faster partition pruning
• ~3x performance degradation, 30 partitions vs 180 partitions

• Built-in Connection Pool Manager
• selective turn off table access for maintenance besides connection pooling

• More fine grained control over shared_buffers
• currently custom warmup code to load relative cold indexes
• Compress cold index pages?

• Vectorized query execution
• built-in column store will also help additional scenarios

• Better options for partition table migration between table spaces
• Tiered table from hot data to cold data

• Stats function
• Many won’t work in a distributed SQL environment

