
Deep Postgres Extensions in Rust:
postgres-extension.rs

Jeff Davis <jdavis@postgresql.org>

Citus Data / Microsoft <Jeffrey.Davis@microsoft.com>

mailto:jdavis@postgresql.org
mailto:Jeffrey.Davis@microsoft.com


2

Motivation

● Postgres relies on an ecosystem of extensions
● This is a good thing!

● Extensions allow domain-specific or 
experimental development

● We need to encourage new developers to get 
involved and new types of extension 
development

● Rust offers a different language and 
environment
● And brings new ideas!



3

Why Rust?

● More memory safety features than C
● Minimal runtime like C:

● No garbage collector or refcounting
● No “extra” code

● No “extra” data held in structs
● Not even a vtable pointer!

● Modern features
● Growing developer community
● Awesome ecosystem



4

The Postgres World is C

● Real extensions used to require C:
● Foreign Data Wrappers
● Custom Data Types
● Index and Sort Support Functions
● Background Workers
● UDFs calling internal functions



5

What About Procedural Languages?

● PL/pgSQL, Perl, Python, v8, etc.
● Essentially sandboxes
● Only for UDFs and SPI

● SPI: Server Programming Interface allows execution of 
arbitrary SQL within a UDF

● We need something more



6

Let’s see what rust can do

● Go beyond the Rust marketing and see how to 
use it to work with a complex system like 
postgres:
● Memory Contexts
● Error handling using setjmp/longjmp
● Global variables
● Intricate APIs



7

So what is postgres-extension.rs?

● Allows close integration into the backend as an 
extension, just like C

● But it’s a pure Rust crate
● A collection of function declarations, macros, 
and utility functions
● Link seamlessly with C



8

Not a Client Driver, PL, or ORM

● There’s already an excellent pure-rust client 
library: rust-postgres
● Interact with postgresql from client application
● Thanks Steven Fackler!

● postgres-extension.rs is for deeper integration 
into the postgres server, like a C extension



9

Features 1

● Can construct and operate directly on Postgres 
structures
● No copying or translation of data going from C to Rust or Rust 

to C
● Structure format is declared to be C-compatible

● Uses palloc()/pfree() for all heap allocations
● Even rust standard library calls
● Means you can safely pass back data that postgres will free 

with a memory context reset

● elog()/ereport() support



10

Features 2: Solves Error-Handling 
Mismatch

● If Rust panics, catch it before it returns to C, 
and turn it into a postgres ERROR

● If postgres calls rust, and rust calls a postgres 
function, and the postgres function throws an 
ERROR:
● catch it and turn it into a rust panic before skipping over any 

rust frames
● Important so that rust destructors are called

● This problem was a stumbling block preventing 
better support for C++ extensions, but is 
solved in postgres-extension.rs



11

Demo 1: UDFs and error handling

● DEMO



12

Demo 2: UDF with SPI

● DEMO



13

Demo 3: Concurrent Server with Tokio

● Tokio is an async framework
● Runtime for futures
● Build a background worker extension that:

● Accepts simple SQL statements from concurrent connections 
to port 8080

● Executes SQL with SPI
● Returns results 



14

Potential Sources of Overhead

● Array bounds checks
● Catching longjmp() at C→Rust boundary
● Catching rust panics at Rust→C boundary
● Converting rust strings to C strings
● All avoidable if you are careful, just like C



15

C and Rust, not C or Rust

● Make rust developers more welcome
● Without making C developers less welcome
● Fitting for a bilingual city like Ottawa!



16

Conclusion

● http://github.com/jeff-davis/postgres-extension.
rs

● Try out writing extensions in a new language
● Only some internal postgres interfaces are 
supported for now

● Rust seems to have passed the test for real 
database internals

● Rust and Postgres have great potential 
together

http://github.com/jeff-davis/postgres-extension.rs
http://github.com/jeff-davis/postgres-extension.rs

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

