
Learning to Hack on Postgres Planner
Melanie Plageman

Goals

• Provide a tangible, trivial example of adding a fix to PostgreSQL planner
• Start a discussion on specifying where to add new optimizations to

PostgreSQL planner

Table of Contents

• Postgres Planner Basics
• Query Planning

• Guidelines for New Optimizations
• Case Study:
• Current Plan and Semantics
• Identifying a Target Plan and Query Tree Transformation
• Constant Folding
• ANY Sublink Pullup

• Resources and Discussion

github.com/melanieplageman/
↳ /debugging_planner Slides and Glossary
↳ /postgres/tree/ Code

↳ /const_folding_sublink_wrong Constant Folding
↳ /qual_scoped_const_folding_sublink Constant Folding only in the qual
↳ /const_ANY_sublink_pullup ANY Sublink Pullup

Query Planning
SQL statement to plan tree

SELECT a FROM foo;

a
───
1
2
4

(3 rows)

ParsingSQL PlanningQuery
Tree ExecutionPlan

Tree

Query Tree

SET debug_print_parse

TO on;

SELECT a

FROM foo

WHERE 1 + 2 = 4;

{QUERY
:rtable (

{RTE

:eref

{ALIAS
:aliasname foo
:colnames ("a")

:jointree

{FROMEXPR
:quals

{OPEXPR
:args (

{OPEXPR
:args (

{CONST

:constvalue 4 [1 …]
{CONST
:constvalue 4 [2 …]

{CONST

:constvalue 4 [4 …]

:targetList (
{TARGETENTRY

:expr

{VAR
:resname a

{QUERY
:rtable (

{RTE
:eref

{ALIAS
:aliasname foo
:colnames ("a")

:jointree
{FROMEXPR
:quals

{OPEXPR
:args (

{OPEXPR
:args (

{CONST
:constvalue 4 [1 …]
{CONST
:constvalue 4 [2 …]

{CONST
:constvalue 4 [4 …]

:targetList (
{TARGETENTRY
:expr

{VAR
:resname a

Semantic Optimization

SELECT a FROM foo WHERE 1 + 2 = 4;

1 + 2 = 4
⇓

FALSE

SELECT a FROM foo WHERE FALSE;

SELECT a FROM foo WHERE 1 + 2 = 4; SELECT a FROM foo WHERE FALSE;

Cost-based Optimization

Plan Tree

SET debug_print_plan
TO on;

SELECT a
FROM foo

WHERE 1 + 2 = 4;

{PLANNEDSTMT
:planTree

{RESULT
:targetlist (

{TARGETENTRY

:expr
{VAR

:resname a
:resconstantqual (

{CONST
:constvalue 1 [0 …]

{PLANNEDSTMT
:planTree

{RESULT
:targetlist (

{TARGETENTRY
:expr

{VAR
:resname a

:resconstantqual (
{CONST
:constvalue 1 [0 …]

Guidelines for New Optimizations

① Does it always retain semantic correctness?

A ⟕ (B ⋈ C)
≠

(A ⟕ B) ⋈ C

An example from src/backend/optimizer/README

② Does it inhibit downstream optimizations?

Optimization Order Matters

An optimization for one query can be a regression for another
Planning steps have expectations for the query tree

② Does it inhibit downstream optimizations?

Optimization Order Matters

SELECT * FROM A, B, C
WHERE a IN (

SELECT b FROM B WHERE b = 5
) AND a = c
AND c = 7;

c = 7
c = a ⇒ a = 7
{ a, c, 7 } =

b = 5
{ b, 5 } =

② Does it inhibit downstream optimizations?

Optimization Order Matters

c = 7
c = a ⇒ a = 7
{ a, c, 7 } =

b = 5
{ b, 5 } =

c = 7
c = a ⇒ a = 7
b = 5

a = b ⇒ a = 5,
⇒ c = 5

{ a, c, 7, b, 5 } =

1. Pullup

2. Pre-process

② Does it inhibit downstream optimizations?

Optimization Order Matters

SELECT * FROM A, B, C

WHERE a IN (

SELECT b FROM B WHERE b = 5

) AND a = c

AND c = 7;

QUERY PLAN

───────────────────────────

Result

One-Time Filter: false

② Does it inhibit downstream optimizations?

Order matters
An optimization for one query can be a regression for another
Planning steps have expectations for the query tree

② Does it inhibit downstream optimizations?

Order matters
An optimization for one query can be a regression for another
Planning steps have expectations for the query tree

③ Is the improvement in execution time worth
the cost in planning time?

No in the case of exhaustive join order = !(#!)

④ Is the complexity cost commensurate with
the performance benefit?

• Narrow use cases
• Optimizations for obscure features
• New APIs without reuse potential

Case Study
Adding a planner improvement

Table "public.foo"

Column │ Type
────────┼─────────
a │ integer

Table "public.bar"

Column │ Type
────────┼─────────
b │ integer

SELECT a FROM foo WHERE NULL = ANY(SELECT b FROM bar);

NULL ≈ Unknown

p q p OR q p AND q p = q

NULL ≈ Unknown

p q p OR q p AND q p = q

TRUE TRUE TRUE TRUE TRUE

TRUE FALSE TRUE FALSE FALSE

FALSE FALSE FALSE FALSE TRUE

NULL ≈ Unknown

p q p OR q p AND q p = q

TRUE TRUE TRUE TRUE TRUE

TRUE FALSE TRUE FALSE FALSE

FALSE FALSE FALSE FALSE TRUE

TRUE NULL TRUE NULL NULL

FALSE NULL NULL FALSE NULL

NULL NULL NULL NULL NULL

EXPLAIN Output?

EXPLAIN SELECT a FROM foo WHERE NULL = ANY(SELECT b FROM bar);

QUERY PLAN
───────────────────────────
Result
One-Time Filter: false

EXPLAIN Output!

EXPLAIN SELECT a FROM foo WHERE NULL = ANY(SELECT b FROM bar);

QUERY PLAN
───────────────────────────
Result

One-Time Filter: (SubPlan 1)
→ Seq Scan on foo
SubPlan 1
→ Materialize
→ Seq Scan on bar

Target Transformation
1. Characterize the query
2. Find analogues
3. Identify transformations

Provably UNTRUE quals

SELECT a FROM foo WHERE NULL = ANY(SELECT b FROM bar);

NULL = ANY(SELECT b FROM bar)
⇓

UNTRUE

SELECT a FROM foo WHERE UNTRUE;

Target Transformation
1. Characterize the query
2. Find analogues
3. Identify transformations

EXPLAIN SELECT a FROM foo WHERE FALSE;

QUERY PLAN
───────────────────────────
Result
One-Time Filter: false

EXPLAIN SELECT a FROM foo WHERE NULL = 7;

QUERY PLAN
───────────────────────────
Result
One-Time Filter: false

A Note on Notation

Target Transformation
1. Characterize the query
2. Find analogues
3. Identify transformations

SELECT a FROM foo WHERE NULL = 7;

EXPLAIN SELECT a FROM foo WHERE NULL = (SELECT b FROM bar);

QUERY PLAN
───────────────────────────
Result

One-Time Filter: false

SELECT a FROM foo WHERE NULL = (SELECT b FROM bar);

SELECT a FROM foo WHERE NULL = ANY(SELECT b FROM bar);

SELECT a FROM foo WHERE …

NULL = 7 NULL = (SELECT b FROM bar) NULL = ANY(SELECT b FROM bar)

SELECT a FROM foo WHERE …
NULL = 7

NULL = (SELECT b FROM bar)
NULL = ANY(SELECT b FROM bar)

EXPLAIN SELECT a FROM foo WHERE …
NULL = 7

NULL = (SELECT b FROM bar)
NULL = ANY(SELECT b FROM bar)

Two !s
Constant Folding
ANY Sublink Pullup

Current Pre-processed Query Tree
SELECT a FROM foo WHERE NULL = ANY(SELECT b FROM bar);

Constant Folding

SELECT a FROM foo WHERE NULL = ANY(SELECT b FROM bar);

preprocess_expression()

SELECT a FROM foo WHERE NULL
= ANY(SELECT b FROM bar);

SELECT a FROM foo WHERE NULL;

Rule ①
This is semantically incorrect in one case

NULL Semantics
Meet ANY semantics

NULL ≟ ANY(SELECT b FROM bar)

Does any b in bar equal an unknown?

SELECT NULL = ANY(SELECT b FROM bar);

Does any b in bar equal an unknown?

Does any b in bar equal an unknown?

SELECT NULL = ANY(SELECT
b FROM bar);

?column?
──────────

(1 row)

Does any b in bar equal an unknown?

SELECT NULL = ANY(SELECT
b FROM bar);

?column?
──────────

(1 row)

TRUNCATE bar;

SELECT NULL = ANY(SELECT
b FROM bar);

?column?
──────────
f
(1 row)

SELECT a FROM foo
WHERE NULL = ANY(
SELECT b FROM bar

);

a
───
(0 rows)

TRUNCATE bar;

SELECT a FROM foo
WHERE NULL = ANY(
SELECT b FROM bar

);

a
───
(0 rows)

SELECT NULL = ANY(SELECT b FROM bar);
SELECT a FROM foo WHERE

NULL = ANY(SELECT b FROM bar);

FALSE if bar is an empty table and NULL otherwise

What could we do instead?

Two !s
Constant Folding only in the qual
ANY Sublink Pullup

SELECT a FROM foo WHERE NULL = ANY(SELECT b FROM bar);

preprocess_qual_conditions()
{

if, after constant folding,
testexpr is a constant NULL,
replace SUBLINK with it

}

subquery_planner()

preprocess_expression()

eval_const_expressions()

SELECT a FROM foo WHERE NULL = ANY(SELECT b FROM bar);

Replace ANY SUBLINKwhen pre-processing quals
SELECT a FROM foo WHERE NULL = ANY(SELECT b FROM bar);

Patched Planning
SELECT a FROM foo WHERE NULL = ANY(SELECT b FROM bar);

Patched Plan

EXPLAIN SELECT a FROM foo WHERE NULL = ANY(SELECT b FROM bar);

QUERY PLAN
───
Result (cost=… rows=0 width=…)
One-Time Filter: false

Rule ④
A very narrow case

Two !s
Constant Folding
ANY Sublink Pullup

SELECT a FROM foo WHERE NULL = ANY(SELECT b FROM bar);

EXPLAIN SELECT a FROM foo WHERE a = ANY(SELECT b FROM bar);

QUERY PLAN

─────────────────────────────

Hash Join

Hash Cond: (foo.a = bar.b)

→ Seq Scan on foo

→ Hash

→ HashAggregate

Group Key: bar.b

→ Seq Scan on bar

SELECT a FROM foo WHERE a = ANY(SELECT b FROM bar);

convert_ANY_sublink_to_join()

… a = ANY(SELECT b FROM bar); # … NULL = ANY(SELECT b FROM bar);

… a = ANY(SELECT b FROM bar); # … NULL = ANY(SELECT b FROM bar);

SELECT a FROM foo WHERE NULL = ANY(SELECT b FROM bar);

Patch

SELECT a FROM foo WHERE NULL
= ANY(SELECT b FROM bar);

SELECT a FROM foo JOIN bar
WHERE NULL = deduped(b);

EXPLAIN SELECT a FROM foo WHERE 7 = ANY(SELECT b FROM bar WHERE b = 5);

Current

QUERY PLAN

──────────────────────────────────────

Result

One-Time Filter: (hashed SubPlan 1)

→ Seq Scan on foo

SubPlan 1

→ Seq Scan on bar

Filter: (b = 7)

Patched

QUERY PLAN

──────────────────────────────────────

Result

One-Time Filter: false

EXPLAIN SELECT a FROM foo WHERE 7 = ANY(SELECT b FROM bar);

Current

QUERY PLAN
──────────────────────────────────────
Result
One-Time Filter: (hashed SubPlan 1)
→ Seq Scan on foo
SubPlan 1
→ Seq Scan on bar

Patched

QUERY PLAN
──────────────────────────────────────
Nested Loop Semi Join
→ Seq Scan on foo
→ Materialize
→ Seq Scan on bar

Filter: (7 = b)

Rules ②, ④
Produces worse plans when the join isn’t eliminated
A very narrow case

Guidelines for New Optimizations

① Does it always retain semantic correctness?
② Does it inhibit downstream optimizations?
③ Is the improvement in execution time worth the cost in planning time?
④ Is the complexity cost commensurate with the performance benefit?

Some Rejected !s

• Use stats
• Execute the subquery

! Discussion !

Guidelines … Others?

① Does it always retain semantic correctness?
② Does it inhibit downstream optimizations?

③ Is the improvement in execution time
worth the cost in planning time?

④ Is the complexity cost commensurate with
the performance benefit?

When is it okay to …?

• Do a catalog lookup
• Do partial execution
• Mutate the plan tree
• Save a reference to parent query

(Re)sources

•Uncommitted planner patches and discussion (browse old
commitfests) https://commitfest.postgresql.org/
• Planner hacking presentations
• Tom Lane PGCon 2011 Hacking the Query Planner
https://www.pgcon.org/2011/schedule/attachments/188_Planner%20talk.pdf

• Robert Haas (CTRL-F ‘planner’)
https://sites.google.com/site/robertmhaas/presentations/2010-2012

• src/backend/optimizer/README

https://commitfest.postgresql.org/
https://www.pgcon.org/2011/schedule/attachments/188_Planner%20talk.pdf
https://sites.google.com/site/robertmhaas/presentations/2010-2012

github.com/melanieplageman/
↳ /debugging_planner Slides and Glossary
↳ /postgres/tree/ Code

↳ /const_folding_sublink_wrong Constant Folding
↳ /qual_scoped_const_folding_sublink Constant Folding only in the qual
↳ /const_ANY_sublink_pullup ANY Sublink Pullup

Acknowledgements
Jesse Zhang – Queries and content assistance
Kaiting Chen—TikZ diagram designer

